
Developmental Science. 2019;e12816.	 wileyonlinelibrary.com/journal/desc	   |  1 of 12
https://doi.org/10.1111/desc.12816

© 2019 John Wiley & Sons Ltd

1  | INTRODUC TION

Theorists of human vision distinguish between a distal object in the 
world and the proximal image projected by that object at any mo‐
ment to the retinae. These projected images change continuously– 
with body movements of the viewer and changes in the physical 
world. A central question in vision research is how, from such contin‐
ually changing images, humans robustly recognize the distal object 
as an entity with stable properties. Despite considerable research, a 
robust computational mechanism eludes us and we lack a satisfying 
explanation of how the brain accomplishes object recognition (Pinto, 
Cox, & DiCarlo, 2008).

Infants’ learning of object names also begins with continually 
changing 2‐dimensional retinal images. To learn an object name and 
generalize the label to varying visual instances of the same object 
perceived later, infants must start with these variable retinal images, 
processing them to recognize the distal object first before linking it 
with a heard word. However, object recognition at the image level 

has received little attention in the study of early word learning. 
Instead, researchers have skipped over the problem of variable im‐
ages, and focused on the mapping problem at a more macro level—
how infants map the perceived distal objects to heard words. Here 
we provide the first evidence that image‐level variability matters to 
early word learning and may be the link that connects infant object 
manipulation to vocabulary development.

1.1 | Variability can facilitate learning

Most theories of object name learning focus on infants’ detec‐
tion of constancies in mappings between words and objects (e.g., 
Gleitman & Trueswell, 2018; Smith, Suanda, & Yu, 2014). From this 
perspective, it might seem reasonable that images with little vari‐
ability would be good for detecting word‐object mappings. This 
fits with the idea that learning systems may benefit by “starting 
small”—having access to fewer data early on (Elman, 1993; Nagai, 
Asada, & Hosoda, 2006). However, if image variability is required 
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to learn to perceive the same distal object across various view‐
ing conditions (Cadieu & Olshausen, 2008; Földiák, 1991), then 
learning systems whose visual experiences sample a broad range 
of possible projected images from the object may acquire more 
robust object recognition and a stronger visual basis for object 
name learning (Bambach, Crandall, Smith, & Yu, 2016). This is the 
hypothesis we test.

This hypothesis is motivated in part by the well‐known link be‐
tween object manipulation and early language learning (e.g., James, 
Jones, Smith, & Swain, 2014; LeBarton & Iverson, 2016). Object image 
variation projected on the retinae is ubiquitous, due to the variety of 
possible poses and positions of objects relative to the viewer, and 
also to many contextual factors, such as lighting, occlusion and back‐
ground information. But one kind of image variation, produced by 
infants’ manual actions on objects—holding, moving, stacking—may 
play a special role in visual object perception. Past research shows 
that the amount an infant manipulates predicts their visual object rec‐
ognition (James et al., 2014; Ruff, 1984; Soska, Adolph, & Johnson, 
2010) and object name learning (James et al., 2014). Different hy‐
potheses for these relations have been offered; object manipulation 
may facilitate: selecting and sustaining attention on objects (Rakison 
& Krogh, 2012; Yu, Smith, Shen, Pereira, & Smith, 2009), deeper en‐
coding of objects (Wilcox, Woods, Chapa, & McCurry, 2007), and in‐
tegration of multiple object views (James et al., 2014). All of these 
macro‐level explanations may be correct, but all begin with self‐gen‐
erated image variability. Hand actions on objects produce changes in 
the 2‐dimensional images on the retina. We test the specific hypothe‐
sis that the amount of object image variability generated by the infant's 
object manipulation varies across individuals and is an important pre‐
dictor of word learning. That is, it may not be any variability in object 
images that matters, but rather self‐generated image variability that is 
a key predictor of infants’ later object name learning.

1.2 | Approach

The proximal image of an in‐view object varies in many ways: con‐
trast, visual size (with proximity to the viewer), color, as well as image 

information about shape that changes with object rotations, occlu‐
sions, and head and eye movements. In this first study of object 
image variability and word learning, we focused on this shape‐related 
variability. Infants wore a head‐mounted eye tracker as they played 
with objects. We used a single algorithmic measure, mask orientation 
(MO), to capture the frame‐by‐frame image variability of objects on 
which infants fixated their gaze: MO is the orientation of the most 
elongated axis of the object pixels from the head‐camera image as 
an approximation of the visual information attended by infants. 
Critically, this is not a measure of the object's real‐world orientation, 
nor does it relate in any direct way to the intrinsic shape properties 
of the distal object. Figure 1a illustrates 2‐dimensional images cap‐
tured by a head‐camera worn by an infant. As illustrated in Figure 1b, 
MO is the orientation of the most elongated axis of whatever object 
pixels were in view, and will vary with direction of viewing and partial 
occlusion. Thus, MO offers an objective way to measure moment‐to‐
moment variability of visual projections of the same object.

Participants were 15 months old, an age of expansive growth 
in object manipulation skills (Lockman, 2000). We measured object 

RESEARCH HIGHLIGHTS
•	 Individual differences in the variability of visual in‐

stances of objects were objectively measured from in‐
fants’ first‐person views using head‐mounted eye 
tracking during naturalistic toy play.

•	 Infants who generated more variable visual object images 
through manual object manipulation at 15 months experi‐
enced greater vocabulary growth over the next 6 months.

•	 Object image variability generated by parent manipula‐
tion and other characteristics of the play session were 
unrelated to infant vocabulary growth.

•	 This is the first evidence that image‐level object variabil‐
ity matters and may be the link that connects infant ob‐
ject manipulation to vocabulary development.

F I G U R E  1   Object images and mask orientation coding. (a) Sample object images captured by an infant's head‐mounted camera while the 
infant looked at one of the objects. (b) Left: sample cropped scene images; right: masks of the object pixels illustrating mask orientation (MO) 
coded in degrees
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images generated by infants during free‐flowing toy play with parents, 
rather than play alone (cf. James et al., 2014; Pereira, James, Jones, 
& Smith, 2010), for two reasons. First, this is the natural context of 
object manipulation for infants at this age. Second, this context is 
likely to elicit attention to objects that do not derive solely from the 
infant's own manipulations, enabling us to compare image variability 
when the infant holds and manipulates objects with image variability 
during other moments in which the infant visually fixated those same 
objects. We measured infants’ vocabulary at 15 months and 6 months 
after the play session, during the period of expansive growth in ob‐
ject name vocabulary (Goldfield & Reznick, 1990). The rationale for 
the experimental and analytic approach is this: If individual infant's 
propensity to manually generate many different visual images of indi‐
vidual objects during free play creates the real‐time visual information 
for learning about object shape and thus object names—and if this 
toy‐play session in the laboratory adequately assesses individual dif‐
ferences in this propensity, then infants who generate images with 
more variable MOs at 15 months of age should have larger object 
name vocabularies at 21 months. Further, if the key ingredient for 
visual learning is variability created by the infant's manipulation be‐
havior, then the MO variability created during this play task by factors 
other than the child's manual behavior should not be predictive.

2  | METHODS

2.1 | Participants

Participants were part of a larger ongoing project to understand the 
real‐time processes supporting early object recognition and word learn‐
ing during toy play. Twenty‐two infants (11 females) contributed toy 
play data when they were 15 months old (range 14.9 to 15.9 months) 
and parents reported on infant vocabulary when the infant was 
both 15 months old and 21 months old (range 20.6 to 21.8 months). 
Twenty‐two infants were determined to be an appropriate sample 
size based on prior research using temporally dense sensory‐motor 
measures (e.g., Kretch & Adolph, 2015; Smith, Yu, & Pereira, 2011; Yu 
& Smith, 2012; Yu, Suanda, & Smith, 2018). More specifically, each 
infant contributed on average 6,714 frames (SD = 1762) of gaze data 
directed to an object—each of which was coded for MO, percentage 
of object pixels, and manual manipulation—and two vocabulary meas‐
ures. In brief, each infant contributed on average 20,142 data points. 

Three additional infants participated at 15 months of age but were 
excluded from the final sample due to incorrect positioning of the 
head camera (n = 1) or productive vocabulary below the 5th percentile 
(n = 2; Fenson et al., 1994). Families were recruited from a working and 
middle‐class population of a Midwestern college town. Infants were 
exposed to only English at home. Participants were treated in accord‐
ance with University IRB #0906000439, and all families gave their in‐
formed consent prior to their inclusion in the study.

2.2 | Stimuli

Six unique novel objects (on average, about 288 cm3; Figure 2a) were 
custom made from clay, wood, and plastic. The objects were organ‐
ized in two sets of three. Within each set, one object was painted 
blue, one red, and one green.

2.3 | Experimental setup

Parents and infants sat across from each other at a small table 
(61 cm × 91 cm × 64 cm). The table, walls, and floor were white and 
participants wore white smocks leaving the toys, hands, and faces as 
the only nonwhite objects in the images (this supported computer 
object recognition, see below). Infants wore a head‐mounted eye 
tracker (Positive Science, LLC) that included an infrared eye cam‐
era—mounted on the head and pointed to the right eye of the par‐
ticipant—that recorded eye images, and a scene camera (Figure 2b) 
that captured 90° of the infant's first‐person visual field (less than 
their full visual field, but sufficient to capture their direction of gaze 
during the majority of the study). The eye‐tracking system recorded 
both the egocentric‐view video and gaze direction (x and y) in that 
view, with a sampling rate of 30 Hz.

2.4 | Procedure

Both participants put on white smocks. The child was then seated 
and distracted with a push‐button pop‐up toy while a second ex‐
perimenter (from behind) placed the eye‐tracking gear low on the 
infant's forehead. One experimenter then directed the child to push 
a button on a pop‐up toy while the second experimenter adjusted 
the camera such that the button being pushed by the child was near 
to the center of the head camera image. To collect calibration points 

F I G U R E  2   Experimental stimuli and eye‐tacking paradigm. (a) Two sets (by row) of novel objects played with during the study. (b) 
Example infant scene camera frame overlaid with crosshairs indicating infant point of gaze
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for eye tracking, the first experimenter then directed the infant's at‐
tention toward the beam of a laser pointer that the experimenter 
directed to various locations on the tabletop to ensure a sufficient 
number of calibration points, which were used after the session to 
calibrate eye‐gaze within the head camera images. Parents were 
told that the goal of the study was simply to observe how their child 
played with toys and that they should try to interact as naturally as 
possible. The experimenters then left the room and the play session 
began. Each of the two toy sets was played with twice, in alternation, 
for about 1.5 min at a time, resulting in approximately 6 min of free‐
play data from each dyad. At both the 15‐month session as well as 
when the infant was 21 months of age, the parent filled out the pro‐
ductive vocabulary sections of a MacArthur‐Bates Communicative 
Development Inventory (MCDI; Fenson et al., 1994), a standardized 
checklist of an English‐learning infant's early productive vocabulary.

2.5 | Dependent measures

2.5.1 | Infant gaze

Three regions‐of‐interest (ROIs) were defined, one for each toy, in 
each play trial. These ROIs were coded by highly trained coders who 
code this variable for many different experiments and who were naïve 
with respect to the research questions. Each ROI was coded manually, 
frame by frame, by watching the infant‐view video with crosshairs in‐
dicating gaze direction (Figure 2b) and annotating when the crosshairs 
indicating infant gaze overlapped any portion of an object and which 
object (Slone et al., 2018). A second coder independently coded a ran‐
domly selected 10% of the frames in the corpus, with the inter‐coder 
reliability ranging from 82% to 95% (Cohen's kappa = 0.81).

2.5.2 | Object image variability

For each frame of the infant‐view video in which an object ROI 
was coded, a mask of the gazed object was defined via a machine 

vision program (see Yu & Smith, 2012, Appendix A). Each mask 
was fitted with an ellipse that had the same normalized second 
central moments as the mask, and the orientation of that ellipse 
(MO) was specified in terms of the angle between a horizontal 
axis and the major axis of the ellipse (Figure 1b); MO ranged from 
−90° to 90°. To quantify the variation of the object images each 
infant observed during play, we calculated Shannon entropy (H) 
of each infant's MO histogram across frames in which the infant 
manipulated the gazed object (Hmanip) and also across frames in 
which the infant did not manipulate the gazed object (Hno manip) 
(see the section on “Quantifying Variability” below). The results 
reported here are based on binning MOs as follows: the interval 
of −90° to +90° was divided into 12 equal bins of 15°, centered at 
−82.5° to +82.5° in increments of 15°, as shown in Figures 3 and 
4; however, variability metrics were highly consistent across the 
different bin sizes we explored (9 bins of 20°, 12 bins of 15°, 18 
bins of 10°).

2.5.3 | Object manipulation

Manual object manipulation was defined as any hand contact with 
an object, and may or may not have included physical movement of 
the object. Manipulation was coded by a set of highly trained coders 
who code this variable for many different experiments and who were 
naïve with respect to the research questions. Manipulation (who 
and which object) was coded manually, frame by frame, from the 
scene camera images and from two high‐resolution (recording rate 
30 Hz) third‐person‐view cameras. We developed a custom‐coding 
program that allowed coders to access these three views simultane‐
ously to determine which object was manually contacted frame by 
frame. In practice, coders most often rely on the view of the scene 
camera, but in case of uncertainty, they would consult with the other 
two views to make a decision. A second coder independently coded 
a randomly selected 10% of the frames in the corpus, with the inter‐
coder reliability ranging from 91% to 100% (Cohen's kappa = 0.94).

F I G U R E  3   Simulated mask orientation (MO) histograms and associated Shannon entropy (H) metrics. Histograms depict 3,040 frames 
(the mean number of frames that an infant manipulated an object) with (left) 83% or (middle) 50% of the data falling into a small number of 
bins, and the rest of the data or (right) all of the data distributed randomly across the remaining bins; a number directly above a bin indicates 
the proportion of data that fell into that bin
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F I G U R E  4   Mask orientation (MO) histograms and associated Shannon entropy (H) metrics for frames containing infant manipulation of 
the gazed object, for all 22 subjects
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2.5.4 | Infant vocabulary

Parents completed the productive vocabulary sections of two MCDIs, 
standardized checklists of early‐learned words that are predominantly 
composed of object names (Fenson et al., 1994). When infants were 
15 months of age parents completed the vocabulary section of the Words 
and Gestures (Infant form) MCDI, and when infants were 21 months of age 
parents completed the vocabulary section of the Words and Sentences 
(Toddler form) MCDI. The Toddler MCDI contains a checklist of 680 words 
(all 396 of the words on the Infant MCDI, as well as 284 later‐learned words), 
including 312 nouns, 232 of which are considered count nouns (Samuelson 
& Smith, 1999)—nouns that typically label solid, countable objects. While 
total vocabulary size estimates an infant's overall productive vocabulary 
ability, count noun vocabulary size specifically estimates an infant's word‐
object mapping ability. Infants were given scores for total vocabulary size 
and count noun vocabulary size at both 15 and 21 months of age based 
on the number of words in the corresponding sections of the MCDI that 
their parent reported the infant produced. Difference scores for both total 
and count noun vocabulary sizes (21 month vocabulary minus 15 month 
vocabulary) were calculated to estimate vocabulary growth.

3  | RESULTS

The data reported in this paper have been archived with Databrary 
and can be accessed via the following link: https://nyu.databrary.

org/volume/705. Table 1 provides descriptive statistics concerning 
the amount of time infants spent looking at and manipulating objects 
during the play session at 15 months. Variability in the object images 
observed during play was assessed separately for frames contain‐
ing (46% of analyzed frames) and not containing (54% of analyzed 
frames) infant manipulation of the gazed object.

3.1 | Quantifying variability

The maximum variability of image properties as measured by the ori‐
entation of the most elongated axis of the image or MO would be 
indicated by a uniform distribution in which all of the possible orien‐
tations occurred equally often. The minimal variation possible would 
be a distribution in which only one MO occurred. Beginning here, 
Figure 3 illustrates three different simulated distributions that fall 
between these extremes. The Low Variability histogram illustrates a 
simulation in which 83.3% of the data fell into only three of the 12 
bins, with the rest of the data distributed randomly across the re‐
maining nine bins. The Some Variability histogram illustrates a simula‐
tion in which 50% of the data fell into two of the 12 bins, with the rest 
of the data distributed randomly across the remaining 10 bins. The 
Highest Variability histogram illustrates a simulation in which 100% 
of the data was distributed randomly across the 12 bins. Figure 4 pro‐
vides histograms of each infant's real MO distribution across frames 
in which the infant manipulated the gazed object (see Figure S1 for 
a similar figure containing infants’ MO distributions across frames in 
which the infant did not manipulate the gazed object).

One well‐used and mathematically well‐understood measure of 
the variability or informativeness in distributions such as those in 
Figures 3 and 4 is Shannon entropy (H) (Shannon, 1948). H measures 
the information value of any data point in the distribution. Each 
image in a more uniform distribution of MO provides more unique 
information about the object than does each image from a lower 
variability distribution. Generally, more uniform (i.e., flatter) distri‐
butions have higher H values and more peaked distributions have 
lower H values. (An alternative approach to measuring the variability 
would be to use the standard deviation of variance of the measured 
MOs for each infant. This measure is not appropriate in the present 
case because the MO distribution need not have a central tendency.)

Comparing the histograms and H values of the simulated (Figure 3) 
and real (Figure 4) MO histograms suggests a relatively high degree 
of variability in the object images observed by individual infants. As is 
evident from Figure 4, there was also considerable variability across 
infants in distributions of observed visual images. The average varia‐
tion for infants’ MO distributions for frames containing object manip‐
ulation (hereafter Hmanip) fell between that of the Some and Highest 
Variability distributions (M = 3.37, SD = 0.23), as did the average varia‐
tion for frames without infant object manipulation (hereafter Hno manip) 
(M = 3.40, SD = 0.13). The average variability did not differ when infants 
did or did not create that variability through their own manipulations: 
t(21) = 1.16, p = 0.26; this empirical fact strengthens the test of the hy‐
pothesis that it is the infant's propensity for object manipulations gen‐
erating different object images that is predictive of vocabulary learning.

TA B L E  1   Means, standard deviations (SD), and ranges of object 
looking and manipulation measured at 15 months, and vocabulary 
measured at 15 and 21 months. Numbers in parentheses in 
measures 2–4 refer to aforementioned measure numbers

Measure Mean SD Range

Behavioral measure

1. Total time (mins) infant looked 
at objects in 6 min play

3.7 1.0 1.1–5.0

2. Proportion of (1) that infant 
manipulated the gazed object

0.46 0.11 0.27–0.68

3. Proportion of (1) that infant did 
not manipulate the gazed object

0.54 0.11 0.32–0.73

4. Proportion of (3) that the parent 
manipulated the gazed object

0.50 0.13 0.24–0.78

Vocabulary measure

5. Total vocabulary size at 
15 months

35 29 4–113

6. Count noun vocabulary size at 
15 months

14 16 0–67

7. Total vocabulary size at 
21 months

234 127 46–419

8. Count noun vocabulary size at 
21 months

97 50 19–173

9. Total vocabulary growth 199 108 42–371

10. Count noun vocabulary 
growth

83 41 19–166

https://nyu.databrary.org/volume/705
https://nyu.databrary.org/volume/705
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3.2 | Predicting word learning

If it is the variability in images generated by children's own actions 
that supports object name learning, then Hmanip but not Hno manip 
should predict later vocabulary growth. In Models 1–2 (Table 2), we 
regressed count noun vocabulary growth between 15 months and 
21 months on Hmanip and on Hno manip, respectively.1  Hmanip was a sig‐
nificant positive predictor of count noun vocabulary growth (Model 
1), whereas Hno manip was not (Model 2). Infants who observed more 
self‐generated object image variability exhibited greater count noun 
vocabulary growth over the next 6 months.

In Models 3–5 (Table 2), we considered alternative hypotheses 
to incorporate other plausible factors and thus further support the 
main findings shown in Models 1–2. Model 3 tested the hypothe‐
sis that parent manipulation matters. That is, although MO entropy 
across frames without infant object manipulation did not relate to 
infant vocabulary, parents were in manual contact with the gazed 
object in approximately half of these frames (Table 1) and it is pos‐
sible that the amount of parent manipulation or the variation gener‐
ated by parent object manipulation matters for vocabulary growth. 
Neither of these factors, however, was a significant predictor of 
count noun vocabulary growth (Model 3).

Model Predictor B [95% CI] β Adjusted R2 BIC

Child manipulation

1 Child manipulation 
only

0.17*  228.4

Hmanip 83 [13, 153] 0.46* 

2 Child no manipulation 
only

−0.02 232.9

Hno manip 57 [−81, 196] 0.18

Parent manipulation

3 Parent manipulation 
only

−0.08 236.3

Hparent manip 41 [−103, 185] 0.13

Time (mins) parent 
manipulated gazed 
objects

7 [−53, 38] −0.07

Child manipulation versus other factors

4 Other characteristics 
only

−0.10 238.5

Total time (mins) 
infant looked at 
objects

−8 [−35, 19] −0.18

Time (mins) infant 
manipulated gazed 
objects

−4 [−49, 40] −0.06

Mask size during 
infant manipulation 
(% scene)

−4 [−28, 19] −0.09

5 Other characteristics 
versus child 
manipulation

0.20*  233.2

Hmanip 104 [32 ,176] 0.58* 

Total time (mins) 
infant looked at 
objects

−11 [−237, 215] −0.27

Time (mins) infant 
manipulated gazed 
objects

−6 [−44, 32] −0.09

Mask size during 
infant manipulation 
(% scene)

−12 [−33, 8] −0.25

*p < 0.05. 

TA B L E  2   Coefficient estimates (Β, β), 
adjusted R2, and Bayesian information 
criterion (BIC) from five regression models 
predicting count noun vocabulary growth 
from visual object entropy (H), object 
looking and manipulation times, and visual 
object size measures
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Models 4 and 5 tested the hypothesis that characteristics of the 
play session other than infants’ MO variability—the total time that 
infants looked at objects (not manipulation per se), or the total time 
that they looked at manipulated objects—predicted infants’ vocab‐
ulary growth. Because our specific prediction is that the relevant 
image variability is about shape, we also included an additional 
image measure in Model 4, the median visual size of the mask (as 
a percentage of the pixels in the entire scene) during infant object 
manipulation. Mask size varies principally with the distance of the 
object from the viewer. None of these factors, however, predicted 
vocabulary growth (Model 4), whereas Hmanip was a significant pre‐
dictor of vocabulary growth even with these other factors in the 
model (Model 5), and significantly increased model fit compared to a 
model with these other factors alone (Model 4), χ2 = 8.34, p = 0.010. 
Infants who observed more self‐generated object image variability 
exhibited greater count noun vocabulary growth, even controlling 
for the amounts of time infants looked at and manipulated objects 
and for objects’ visual sizes. Moreover, comparison of Bayesian in‐
formation criterion (BIC) values for each of the models suggests that 
a model including Hmanip alone (Model 1) provided the best model fit 
(lowest BIC) (Raftery, 1995). In total, these results provide compel‐
ling support for the idea that self‐generated variability in the shape 
properties of the visual image supports the processes important to 
early word learning.

3.3 | Image variability of individual objects

To ensure sufficient data for measuring individual differences in 
self‐generated variability, the entropy measures in the main analy‐
ses were calculated across all objects without taking into account 
the potentially different ways that individual objects may have been 
positioned and manipulated. Infant's propensity to generate vari‐
able images when handling objects in this task is assumed to be a 
measure of their likelihood in general. Under this assumption, the 
present measure across all objects seems likely to provide a reason‐
able index of this propensity. However, the hypothesized mechanism 
through which these self‐generated variable images are presumed 
to work is by providing the perceiver with multiple views of a single 
object, the training data for recognizing an object under different 
viewing conditions. It is possible, in the present study, that differ‐
ent objects’ affordances (Figure 2a) could lead an individual object's 
MO distribution to look very different from the MO distribution of 
all objects combined, which would limit the generalizability of the 
present measure. Therefore, we calculated entropy of MOs for each 
object, per subject, separately for frames in which the infant did and 
did not manipulate the gazed object. On average, infants contributed 
enough data to calculate entropy of MOs from frames containing in‐
fant object manipulation for 4.4 of the 6 objects (total corpus across 
all 22 infants = 97 objects), and from frames not containing infant 
object manipulation for 4.7 of the 6 objects (total corpus across all 
22 infants = 104 objects). For each infant we calculated (a) mean 
per‐object MO entropy, and (b) the proportion of objects with MO 
entropy above the corpus median, both for frames containing and 

not containing infant object manipulation. Infants’ mean per‐object 
MO entropy as well as the proportion of objects with MO entropy 
above the median were highly correlated with the MO entropy of all 
objects combined that were the basis for the main analyses, both for 
frames in which the infant manipulated the gazed object (rs > 0.64, 
p < 0.01) and for frames in which the infant did not manipulate the 
gazed object (rs > 0.50, p < 0.05). These findings suggest that the 
degree of observed variability in MOs was fairly consistent across 
objects within individual participants, such that infants who experi‐
enced greater self‐generated per‐object variability (i.e., higher mean 
per‐object entropy as well as infants who observed a greater propor‐
tion of objects with MO entropy above the median) also tended to 
experience greater self‐generated variability in the overall MO dis‐
tribution (across all objects combined).

4  | DISCUSSION

Objects names are a major component of early vocabularies (Fenson 
et al., 1994) and learning object names depends on visually recog‐
nizing objects in the world. However, the visual information and 
visual problems young learners must solve have rarely been studied 
by early language researchers. Although category learning—the va‐
riety of things that are dogs or cars, for example—has been studied 
at a conceptual level (Bloom & Markson, 1998; Gelman & Meyer, 
2011), the fundamental visual question of moment‐to‐moment var‐
iations in visual appearance presented by objects has not. Rather, 
many laboratory studies of infant word learning leap over the step 
of building an object representation that works over multiple view‐
ing contexts, instead presenting a single view of an object to be 
linked with a word (e.g., Houston‐Price, Plunkett, & Harris, 2005; 
Smith & Yu, 2008).

Yet early learning of object names is in part a visual problem, as 
young learners must find and recognize individual objects given the 
highly variable nature of the proximal stimulus, the 2‐dimensional 
image received by the eye. The present results make clear that the 
visual information presented by a single object to the viewer's sen‐
sors is highly variable. They also show that this variability is not a 
negative factor for learning, but a positive one: the amount of self‐
generated variability in an infant's own view positively predicts later 
vocabulary growth. Why should this be the case? The answer, we 
propose, is that an essential component of the data for visual learn‐
ing about objects is this self‐generated variability. Previous research 
has shown that infant object manipulation skills are developmentally 
linked to changes in visual object recognition (Soska et al., 2010), 
that experimental conditions that foster different object manipula‐
tion experiences change shape perception and object categorization 
(Smith, 2005; see also James et al., 2014), and that poor object ma‐
nipulation skills predict later deficits in language learning (Zuccarini 
et al., 2017). Other studies have shown that developmental changes 
in visual object recognition are correlated with noun vocabulary 
size (Jones & Smith, 2005; Smith, 2003) and predict later changes 
in object name learning (Yee, Jones, & Smith, 2012). This is the first 
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demonstration that self‐generated variability in the proximal 2‐di‐
mensional image is related to vocabulary development, a potential 
mechanistic pathway from manipulation to object name learning.

The primary measure of visual object variability used here—en‐
tropy of a MO distribution—is measured directly from object image 
pixels and thus unencumbered by assumptions about the nature of 
varying object views or the specific forms of visual information that 
may be critical to object recognition. We see this as a strength. The 
young visual learner begins with the image. For example, prior re‐
search has shown that toddlers are biased to generate planar object 
views and the planar bias is related to better visual object recogni‐
tion (James et al., 2014). But planar views are defined by the relation 
of the viewer to the distal object (an elongated axis perpendicular or 
parallel to the line of sight) and not by the image information. The 
visual system cannot know that a view is planar in these terms with‐
out knowing the overall shape of the object in the world; “planar” 
is not an image property but a higher‐level descriptor of a whole 
object property that must, somehow, be recovered from the image 
and variations in the image as the relation between the object and 
the viewer change in time. By hypothesis, manual play with objects 
is critical to the development of visual object recognition because 
it generates this variation from which the visual system can dis‐
cover the higher‐level properties of distal objects and their views. 
Nevertheless, variability in the proximal image was not redundant 
with amount of object manipulation, but rather was created through 
object manipulation combined with other factors including gaze, 
head movements relative to the hands, and occlusion of objects by 
hands and other objects. The present results show that variability 
in the proximal image of an object is considerable in a single session 
and that the differing propensities of individual children to self‐gen‐
erate that variability predicts later vocabulary growth beyond sheer 
amount of object manipulation. Future work elucidating the visual 
statistics of the views infants experience—and what lessons they 
may teach the visual system about 3‐dimensional objects—consti‐
tutes a crucial missing link in current understanding. The present 
study provides a first step to filling that gap in current knowledge.

Why does the image variability created by the child matter but 
not the image variability of the visually attended object at other mo‐
ments? The developing infant and their behavioral tendencies are 
likely the dominant factor in creating the infant's own visual expe‐
riences—because after all, the infant's eyes are connected to their 
own body and are coordinated with their hand actions in goal di‐
rected action. Thus, it could be that what matters for predicting later 
vocabulary development is the day‐in and day‐out experience of 
different object views, however those views are generated. The in‐
fant's own activity in this experiment—not the parents’ activity with 
the objects—may simply be the best predictor of that day‐in day‐out 
variability in everyday life that is the real‐world training ground for 
the visual system. However, it is also possible that self‐generated 
object manipulation is essential. Previous research demonstrates 
that placing hands near an object can enhance visual perception, 
processing, and memory of objects (Brockmole, Davoli, Abrams, & 
Witt, 2013), which in turn likely strengthen object representations. 

Prediction learning (Apps & Tsakiris, 2014; Lowe, 1999) from one's 
own actions to changes in visual information may also be an import‐
ant part of the process. Another possibility concerns the mechanism 
that enables learners to link one momentary image of an object to 
another different image of that same object. Holding an object may 
provide key information to the young perceiver that a set of varying 
views is all of the same object.

This study is correlational in nature, predicting from behavior 
at one time point to a later outcome. Thus, it is possible that more 
“advanced” babies come to more informatively manipulate objects 
to create more variability in objects’ images and then also through 
some independent pathway build larger vocabularies. This typology, 
however, leaves unanswered the considerable literature showing 
that giving infants and children the chance to manipulate objects 
leads to better visual object memory and visual discrimination 
(Bushnell & Baxt, 1999; Needham, 2000; Ruff, 1982; Wilcox et al., 
2007). The importance of a deeper understanding of the visual infor‐
mation—and the role of infant manipulations in generating that infor‐
mation—extends both to fundamental questions about visual object 
recognition and to understanding early object name learning. There 
are many empirical indicators that these are causally related devel‐
opments including developmental changes in visual object recogni‐
tion just prior to and during the period of explosive acquisition of 
object names (James et al., 2014; Smith, 2003, 2009). There are also 
increasing indicators that children who are slow to grow their vo‐
cabularies show delays or disruptions in visual processes (Behrmann, 
Thomas, & Humphreys, 2006; Collisson, Grela, Spaulding, Rueckl, & 
Magnuson, 2015; Jones & Smith, 2005). Finally, there is considerable 
evidence that early disruptions of object manipulation are diagnos‐
tic markers of later learning problems (Provost, Lopez, & Heimerl, 
2007). The specific contribution of the present study is that it pro‐
vides a direct link from object manipulation to the variability of the 
visual information at the level of 2‐dimensional images to later object 
name learning. This is a key step to understanding how that image 
variability supports visual learning and object name learning.

Most achievements in human development are multicausal, 
with many contributing factors. Vocabulary growth is predicted by 
a host of factors in addition to object image variability, including 
factors related to the infants’ behavior and development—habitu‐
ation (Tamis‐LeMonda & Bornstein, 1989), sustained attention (Yu 
et al., 2018), walking (Walle & Campos, 2014)—and factors related 
to parent behavior—language input (Cartmill et al., 2013), parental 
responsiveness (Tamis‐LeMonda, Bornstein, Baumwell, & Melstein 
Damast, 1996)—among others. A particular focus of past word‐
learning research has been the role of language input and the in‐
formation available for word learning in the immediate context of 
heard words. However, the present study and recent research by 
Clerkin and colleagues motivates the importance of studying infants’ 
visual experiences of objects in its own right. Clerkin, Hart, Rehg, 
Yu, and Smith (2017) outfitted infants with head‐mounted cameras 
while in their own homes and demonstrated, perhaps unsurprisingly, 
that the most frequent objects in infants’ visual fields were those 
whose noun labels infants typically learn earliest in life (i.e., before 



10 of 12  |     SLONE et al.

16 months of age). More surprising is their finding that infants very 
rarely heard the labels for these nouns while they were in view (only 
3% of episodes when a visual object was present included the label 
for that object) (Clerkin & Smith, in preparation), suggesting that the 
visual presence of objects may contribute to object name learning 
in general and independently of object naming, setting up the early 
learning system for when it later hears object labels. The take‐away 
is not that language input does not matter, but rather that the every‐
day visual information infants observe about objects may be related 
to progress in early word learning even apart from simultaneous ob‐
ject naming.

The present study examined how and why visual object infor‐
mation might matter for object name learning. We argue that visual 
variability likely contributes to more generalizable object repre‐
sentations, such that objects are better recognized and therefore 
better mapped to their word labels when those labels are heard. 
This possibility is supported by neural network modeling work by 
Bambach et al. (2016) and Bambach, Crandall, Smith, & Yu (2018). 
These researchers demonstrated that first‐person view images of 
objects from naturalistic toy play can be used to train CNN‐based 
(convolutional neural network‐based) object models that general‐
ize to recognizing new object instances unseen in model training. 
Specifically, the researchers found that toddlers’ object views were 
more visually diverse than those of their parents, and that the net‐
works trained on a set of diverse toddler‐generated object views 
consistently recognized objects better than the networks trained on 
a set of parent‐generated object views (Bambach et al., 2016) and 
the networks trained on a set of less diverse toddler‐generated ob‐
ject views (Bambach et al., 2018). This modeling work supports the 
possibility that diverse views of objects may be critical to the devel‐
opment of generalizable object representations. The present work 
provides valuable insights into the type of view diversity that may be 
most important for developing generalizable object representations: 
self‐generated shape‐related variability in object images.

4.1 | Next steps

The present study measured self‐generated variability in object 
images during a 6‐min toy‐play session in a laboratory. The fact 
that this variability predicted vocabulary growth over the next six 
months suggests that the way infants manipulate objects to ex‐
plore and create variable views of objects in their everyday lives 
may be a tendency stable enough to show up in a short labora‐
tory session, and opens exciting new directions for more precise 
questions about why and how the proximal visual stimulus relates 
to learning about objects. Are infants actively creating the object 
views they want to see or are these views bi‐products of the types 
of object manipulations infants engage in? Is the relation between 
object image variability and vocabulary growth permissive, with 
visual variability allowing for better visual object representations 
in general? Or does visual variability lead directly to better rep‐
resentations of specific objects, facilitating word learning when 
those objects’ names are heard? To answer these questions, we 

can create and compare experimental conditions in which infants 
either actively create visual variability or are passively exposed to 
the same amount of variability. Moreover, we can directly meas‐
ure infants’ knowledge and representations of visual objects after 
toy play, as well as their learning of the labels of those objects, 
and directly link visual variability created during object play with 
various kinds of learning outcomes for those objects. More gener‐
ally, future studies need to rely on both experimental and obser‐
vational/correlational approaches to examine the pathway from 
self‐generated object manipulation, to visual object variability and 
to vocabulary growth. An important goal of language acquisition 
research is to continue to elucidate how the many factors shown 
to predict word learning work together in the moment and in de‐
velopmental time.
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paper were conducted with count noun vocabulary growth as the 
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