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Abstract

Learning about the structure of the world requires learning probabilistic relationships: rules in which cues do not predict
outcomes with certainty. However, in some cases, the ability to track probabilistic relationships is a handicap, leading adults to
perform non-normatively in prediction tasks. For example, in the dilution effect, predictions made from the combination of two
cues of different strengths are less accurate than those made from the stronger cue alone. Here we show that dilution is an adult
problem; 11-month-old infants combine strong and weak predictors normatively. These results extend and add support for the
less is more hypothesis: limited cognitive resources can lead children to represent probabilistic information differently from
adults, and this difference in representation can have important downstream consequences for prediction.

Introduction

Succeeding in the world requires making accurate
predictions. From patterns of light on the retina, one
must predict the structure of the environment. From a set
of job applicants, one must predict which will be the best
employee. From a set of potential foods, one must
predict which will result in a delicious dinner and which
will result in an upset stomach. These are difficult
problems because they involve probabilistic relation-
ships: no cue predicts the desired outcome with 100%
certainty. Probabilistic prediction is a general problem
faced by cognitive systems (Brunswik, 1943; Ramscar,
Yartlett, Dye, Denny & Thorpe, 2010).

Humans are remarkably good at this. For instance,
Griffiths and Tenenbaum (2006) showed that the average
undergraduate can predict movie runtimes, lengths of
poems, and reigns of pharaohs with high accuracy from
a single piece of information. Even young infants are able
to track (Saffran, Aslin & Newport, 1996) and make
predictions (Xu & Garcia, 2008) from probabilistic
events in their environments. These processes appear
across tasks (e.g. visual perception: Kersten & Yuille,
2003; motor control: K€ording & Wolpert, 2006; memory
retrieval: Shiffrin & Steyvers, 1997) and are available
quite early (e.g. newborns: Bulf, Johnson & Valenza,

2011; 2-month-olds: Kirkham, Slemmer & Johnson,
2002, 6-month-olds: Shukla, White & Aslin, 2011). Their
ubiquity has inspired hope for a unified understanding
of both mature and developing cognitive systems as
probabilistic prediction machines (Chater, Tenenbaum &
Yuille, 2006; Tenenbaum, Kemp, Griffiths & Goodman,
2011; Clark, in press). Unsurprisingly, the efficiency of
these processes generally improves over development (Xu
& Tenenbaum, 2007; Smith & Yu, 2008; Thiessen, 2010);
however, on some probabilistic prediction tasks, young
children actually outperform adults.

In perhaps the simplest such task (Derks & Paclisanu,
1967; see also Gardner, 1957), participants are presented
with two lights, and, in a series of trials, must predict
which light will activate. If they make the correct
prediction, they receive a reward. The stimuli are prob-
abilistic – one light activates on 70% of the trials, and the
other light activates on the remaining 30%. The optimal
strategy – the one that maximizes rewards – is to
always select the more probable light. This is precisely
how 3- and 4-year-old children behave. However, it is not
how adults behave; adults probability match, selecting
each light in proportion to its probability of activation,
reducing their total reward (Estes, 1976). This perplexing
result has been explained as a type of apophenia: search
for local sequential patterns in the light sequences that

Address for correspondence: Daniel Yurovsky, Stanford University, Department of Psychology, 450 Serra Mall, Stanford, CA, 94305, USA; e-mail:
yurovsky@stanford.edu

© 2012 Blackwell Publishing Ltd, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden, MA 02148, USA.

Developmental Science 16:2 (2013), pp 149–158 DOI: 10.1111/desc.12011



do not exist (Wolford, Newman, Miller & Wig, 2004, Yu
& Cohen, 2009). Thus, adults’ prowess in tracking
probabilities at multiple levels leads to suboptimal
performance in this task. This argument is reinforced
by two further sources of evidence. First, adults who are
more likely to probability match are also more likely to
discover local pattern structure if it does exist (Gaissma-
ier & Schooler, 2008). Second, adults perform more
normatively when they have fewer cognitive resources
available; maximizing more often under dual-task con-
ditions (Wolford et al., 2004; Gaissmaier, Schooler &
Rieskamp, 2006).
Newport and colleagues (Johnson & Newport, 1989;

Newport, 1990; Hudson Kam & Newport, 2005) have
proposed that children’s resource constraints in proba-
bilistic prediction are adaptive. Under their less is more
hypothesis, children outperform adults in learning lan-
guages precisely because their resource constraints limit
their ability to entertain complex hypotheses. Elman
(1993) formalized this claim, showing that initially
resource-constrained neural networks learned grammat-
ical structure better than unconstrained nets. Resource
constraints prevented the search for complex patterns,
keeping networks from getting stuck in local maxima. In
a language-learning task analogous to the light predic-
tion task above, Hudson Kam and Newport (2005)
showed that adults probability match their language
input, whereas 6-year-olds maximize, always picking the
most probable alternative. Further, as before, increasing
task demands lead to increased maximizing in adults
(Hudson Kam & Newport, 2009). The less is more
hypothesis (Newport, 1990) thus suggests that the
representation of probabilistic information changes over
development. If maximizing is a general property of
young children’s probability learning, then they should
also outperform adults in other cases in which optimal
performance results from maximizing rather than prob-
ability matching. This paper tests this prediction in the
context of combining information from two probabilistic
predictors of different strengths.
Across a range of domains, tasks, and developmental

ages, evidence from two strong predictors leads to better
learning and prediction than a single strong predictor
alone (Shanteau, 1975; Ernst & Banks, 2002; McKenzie,
Lee & Chen, 2002; Yoshida & Smith, 2005; Frank,
Slemmer, Marcus & Johnson, 2009). However, the
addition of evidence from a weaker predictor to a
stronger predictor can lead to non-normative behavior in
adults. For instance, in the ‘bookbags-and-pokerchips’
task, adults are shown two bookbags and told that one
contains 70 white chips and 30 red chips, and the other
contains the opposite red/white ratio. The experimenter
then secretly chooses one of the bags, and randomly

draws a white chip. When asked to guess the bag’s
identity, participants are 60% certain it is the 70 white/30
red bag. Then, a second sample is drawn – three white
chips, and three red chips – and participants are again
asked to guess the bag’s identity. While this second
sample is nondiagnostic (i.e. equally likely to have come
from either bag), participants decrease their certainty in
the white-heavy bag (Shanteau, 1975). This dilution effect
is also found in more naturalistic settings (Nisbett,
Zuckier & Lemley, 1981) and even when the additional
evidence is a weaker positive predictor rather than a
nondiagnostic predictor (McKenzie et al., 2002). But the
less is more hypothesis predicts that young learners will
combine strong and weak predictors more optimally.
The dilution effect should depend critically on how the

strength of each predictor is represented. The addition of
a Weak Cue can dilute evidence from a Strong Cue only
if the cognitive system represents the strength of each cue
in proportion to its probability (probability matching).
On the other hand, if the system represents only the most
probable outcome (maximizing), then a Weak Cue can
only add to a Strong Cue. Because they are both coded as
strong cues, their combination should act as an even
stronger cue (e.g. Ernst & Banks, 2002; McKenzie et al.,
2002; Frank et al., 2009). Thus, we predict that where
adults average a strong and weak probabilistic predictor,
11-month-old infants should treat their combination
additively. In the experiments that follow, two centrally
presented geometric shapes differed in the probability
with which they predicted the appearance of a reinforc-
ing cartoon character stimulus. One shape was a Strong
Cue, and the other was a Weak Cue. Then, after learning
these shape–outcome relationships, participants were
tested on trials in which Both Cues appeared together.
We predicted that adults would probability match –
predicting more for the Strong Cue than for the Weak
Cue – and that Both Cues would be treated as interme-
diate evidence. Infants, in contrast, would maximize in
response to both the Strong and Weak Cues – treating
them similarly – and predict even more strongly in
response to Both Cues.

Experiment 1

Method

Participants

Twenty-four undergraduate students at Indiana Univer-
sity, and 24 11-month-old infants (mean age 11 mo
15 days; range: 10 mo 15 days to 12 mo 7 days, 13
female) participated in the experiment. Three additional
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adults and 11 additional infants were excluded because
of failure to calibrate, incomplete data, and (infants
only) fussiness. Participants received partial course credit
(adults) or a small gift (infants) as compensation.

Stimuli

Stimuli fell into two categories – cues and reinforcers.
Cues were videos of monochromatic geometric shapes
looming and shrinking. Four such shapes were created: a
red square, a blue circle, a green triangle, and a yellow
diamond. Reinforcers were videos of cartoon characters,
each of which displayed a different animated behavior.
For instance, one reinforcer consisted of a bouncing
purple stuffed animal. Each of the three reinforcer videos
was accompanied by a unique sound. Videos for all
stimuli were 2 seconds long.

Design and procedure

The experiment consisted of a series of trials in which a
cue appeared centrally on the screen for 2 seconds and
then was followed by two blank boxes that appeared for
1 second on each side of the central location. After this,
on some trials a reinforcer would appear in one of the
boxes for 2 seconds. On other trials, the boxes would
remain blank for 2 seconds. Figure 1 shows a schematic
of an example reinforcement trial.

Each participant saw 10 such trials for each of two
unique cues. One shape was a Strong Cue – predicting
the appearance of a random reinforcer on seven of 10
trials. On the other three trials, the boxes remained
blank. The other shape was a Weak Cue – predicting the
appearance of a random reinforcer on only four of 10

trials. After 20 single-cue trials, participants saw five
trials on which Both Cues appeared together, and which
were never followed by a reinforcer.

All reinforcers appeared on the same side of the screen
for a given participant, and reinforcer sides and cue
identities were counterbalanced across participants. Sin-
gle-cue trials appeared in random order until all 10 trials
of each cue had been seen. Finally, an attention-getter
was shown prior to the onset of each trial and remained
on screen until fixated for at least 100 ms.

Participants watched the experimental videos on a 17-
inch monitor while their eye movements were recorded
by a Tobii 1750 eye tracker (see Appendix for details).
The eye tracker was calibrated for each participant
before the experiment began. To facilitate fair compar-
ison between adult and infant participants, adults were
only instructed to watch the screen for the duration of
the experiment.

In order to determine how cues affected participants’
predictions about the appearance of reinforcers, we
analyzed predictive looking after the offset of the cue,
and thus, the dependent measure of interest was latency
to saccade to either of the boxes. However, because
reinforcers appeared in these boxes after 1 second on
reinforcement trials (Figure 1), any saccades initiated
after this point were more likely reactive than predictive.
Allowing 200 milliseconds for saccade initiation (Engel,
Anderson & Soechting, 1991), only eye movements
within 1.2 seconds of cue-offset were analyzed. For a
related location-based prediction paradigm, and another
comparison of predictive learning in adults and infants,
see Richardson and Kirkham (2004).

Results and discussion

The key empirical question is how participants’ proba-
bility of predicting the appearance of the reinforcer in
each box varied in the Weak, Strong, and Both Cues
conditions. To answer this question, one wants to
estimate the relative probability of looking to either the
Correct or Incorrect box over time as a function of cue.
To ensure that we measured predictive rather than
reactive saccades, we analyzed only eye movements in the
first 1.2 seconds after cue-offset (see above). However,
not all participants made a saccade on all trials in this
window, leading to right-censored data. Since simply
excluding these trials would produce a biased estimate of
saccade probability, the appropriate statistical analysis is
a proportional hazards regression (Cox, 1972). This
analysis estimates a hazard function for each condition –
the probability of making a saccade at each time-point
given that no saccade has yet been made (for other
examples of Cox regression in developmental studies, see

Figure 1 A schematic of one experimental trial. A cue
loomed on the screen for two seconds, was replaced by two
empty boxes for 1 second, and then a reinforcer played in one
of the boxes for 2 seconds.
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e.g. Zosuls, Ruble, Tamis-LeMonda, Shrout, Bornstein
& Greulich, 2009; Kidd, Piantadosi & Aslin, 2012).
Cox regression is a semi-parametric model: it makes

no assumptions about the functional form of the hazard
function. Instead, a baseline hazard function is estimated
empirically from one condition, and other conditions are
assumed to have hazard functions proportional to that
baseline. Here, the baseline function was estimated from
the Strong Cue condition, both because subsequent
analysis becomes most straightforward, and because it
contained the greatest proportion of valid eye-tracking
data. This produces the most robust function estimate.
Because participants could make a saccade to one of two
locations on each trial (Correct or Incorrect), the
regression model was stratified by location (Lunn &
McNeil, 1995). That is, cues could have different effects
on the hazard rate for different locations. Models were fit
separately for adults and infants using the last five trials
of each single cue (Weak and Strong) condition, and all
five trials of the Both Cue condition.
These analyses indicate that adults and infants alike

were more likely to look predictively to the Correct than
the Incorrect location (Adults: b = �2.05, z = �6.72,
p < .001; Infants: b = �.779, z = �3.48, p = .001).
However, adults and infants treated the cues differently.
The adult data are shown in Figure 2a. Compared to the

Strong Cue, both the Weak Cue (b = �.388, z = �2.05,
p < .05) and Both Cues (b = �.401, z = �2.09, p < .05)
elicited less predictive looking to the Correct location.
The Weak Cue (b = .77, z = 2.24, p < .05), but not Both
Cues (b = .507, z = 1.41, ns), produced more prediction
to the Incorrect location than the Strong Cue. Thus, the
Strong Cue elicited the proportionally highest correct
predictions, the Weak Cue the lowest, and Both Cues
were intermediate. This is evidence for a dilution effect in
the visual domain.
The infant data (Figure 2b) show maximizing in the

face of both cues and no dilution effect. Predictive
looking to the Correct location was unaffected by cue
type (Weak vs. Strong: b = �.082, z = �.421, ns; Both vs.
Strong: b = .091, z = �.475, ns). But, relative to the
Strong Cue, Both Cues (b = �1.16, z = �3.19, p < .01)
but not the Weak Cue (b = �.391, z = �.1.38, ns)
reduced prediction to the Incorrect (i.e. non-reinforced)
location. Thus, seeing Both Cues significantly decreased
infants’ probability of making Incorrect predictions,
producing a relatively higher proportion of Correct
predictions. Infants maximized when they saw the Weak
Cue – treating it just like the Strong Cue – and Both Cues
reduced incorrect prediction.
In brief, when exposed to the same multi-modal

regularities, infants and adults responded by making
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Figure 2 Cumulative hazard functions for each cue/location combination for both groups. Each curve shows the estimated
cumulative probability of a predictive look to a location (Correct/Incorrect) in the presence of a particular cue (Strong/Weak/Both)
over time. Adults (a) were more likely to make the Correct prediction when seeing the Strong Cue than the Weak Cue or Both Cues.
Further, the Weak Cue increased their probability of predicting to the Incorrect location, but Both Cues did not. Thus, Both Cues
were treated as intermediate between the Strong and Weak cues, indicating dilution. Infants (b) treated the Strong and Weak cues
identically, indicating that, in contrast to adults, they were maximizing. Further, they were less likely to predict to the Incorrect
location when cued by Both Cues than the Strong Cue. This is evidence of additive cue combination by way of reduced prediction of
incorrect alternatives.
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different predictions. Adults discriminated strongly
between the Correct and Incorrect location for the
Strong Cue, weakly between the two locations for the
Weak cue, and showed intermediate discrimination when
Both Cues were presented together. Infants, in contrast,
predicted to the Correct side at the same rate in each
condition, but predicted less often to the Incorrect
location in the presence of Both Cues.

For both groups, the proposed interpretation of the
data draws on looking to both the Correct and Incorrect
locations. But why do participants ever look to the
Incorrect location at all? One likely explanation is that
the observed gaze behavior results not just from partic-
ipants’ learning in the task, but also from their expec-
tation before coming into the experiment (or prior). On
the very first trial, participants could reasonably make a
prediction to either box even though they had not seen a
single reinforcer. The key idea is that unobserved events
should be treated not as impossible, but only as less and
less likely the longer they are unencountered. Thus, each
reinforcer acts not only as evidence for the Correct
location, but also as evidence against the Incorrect
location. When Both Cues are seen together, both aspects
of the cues are combined. Thus, while 11-month-olds’
prediction systems may be too noisy to produce faster
predictions to the correct locations (as evidenced by their
low ceiling-level performance in other tasks), we can see
evidence of their more normative combination in the
reduction of Incorrect looks.

While this account is consistent with both the adult
and infant data, the infant data may have a simpler
explanation. A similar pattern of looking would be
observed if infants did not learn anything about the cues
and the cue-specific predictive probabilities, but simply
learned over the course of training that outcomes
appeared in the Correct but not Incorrect locations.
Because the Both Cues test trials occurred after 20
training trials, we would expect better prediction on
these test trials than on the single cue training trials.
Experiment 2 was designed to test this alternative
possibility.

Experiment 2

In Experiment 2, infants were exposed to the same
training trials as in Experiment 1, but training was
followed by two kinds of test trials. On the first, infants
were shown two New Cues in the same positions as the
cues they had seen in training. If training led to a general
preference to look to the Correct location rather than
specific cue-reinforcer relationships, predictive looking
on these New Cues trials should be similar to that

observed on Both Cues trials in the previous experiment.
In contrast, if infants learned a cue-specific predictive
relationship, their looking patterns should be different,
perhaps providing information about their starting point
(or prior) in the absence of cue-specific information.
These New Cues trials were subsequently followed by the
original Both Cues trials. These trials were included to
test the robustness of infants’ predictive learning from
the single cue trials. If infants again showed improved
prediction in the face of Both Cues after the intervening
New Cues trials, this would be strong evidence that they
learned and combined cue-specific predictive relation-
ships.

In order to limit fussiness and fatigue, infants were
shown three New Cues trials and three Both Cues trials,
resulting in a total of six as compared to the five test
trials of Experiment 1.

Method

Participants

Twenty 11-month-old infants (mean age 11 mo 15 days;
range: 11 mo 4 days to 12 mo 3 days, 8 female)
participated in the experiment. Ten additional infants
were excluded because of failure to calibrate, incomplete
data, and/or fussiness. Each infant received a small gift
as compensation.

Stimuli

Stimuli for Experiment 2 were identical to those used in
Experiment 1.

Design and procedure

As in Experiment 1, infants were exposed to a series of
trials on which a centrally located cue probabilistically
predicted the appearance of a reinforcer in one of the on-
screen boxes. Infants were again exposed to 20 training
trials – 10 on which they saw a Strong Cue and 10 on
which they saw a Weak Cue. These training trials were
identical to those presented in Experiment 1. Subse-
quently, these training trials were followed by two kinds
of test trials.

The first three test trials were New Cues trials on which
infants saw two new cues on the screen, one in each of
the locations previously occupied by the cues from
training. After these trials, infants saw three Both Cues
trials identical to those in Experiment 1. For example, if
the training trials each showed either a red square or a
blue circle, the New Cues trials would show a green
triangle and a yellow diamond, and the Both Cues trials
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would show the red square and blue circle again. As in
Experiment 1, reinforcer side and shape/cue type/loca-
tion mappings were counterbalanced across infants.

Results and discussion

As in Experiment 1, infants’ predictions were measured
only during the first 1.2 seconds after cue-offset, and
look latencies to the correct and incorrect locations for
each cue type were analyzed using a proportional
hazards regression. The Strong Cue trials were again
used to estimate the baseline hazard function. Because
infants received only three test trials of each type, we
analyzed the last three training trials for each Cue.
Figure 3 shows infants’ cumulative hazard functions

for each cue type and location. As in Experiment 1,
infants were more likely to look predictively to the
Correct than the Incorrect location (b = �.842,
z = �2.57, p = .01). As in Experiment 1, infants showed
evidence of maximizing, with no effect of the Weak Cue
on looking to either the Correct (b = �.07, z = �.26, ns)
or the Incorrect location (b = �.26, z = �.63, ns). Also,
as in Experiment 1, Both Cues did not affect infants’
looking to the Correct location (b = �.05, z = �.19, ns)

but significantly decreased their looking to the Incorrect
location (b = �1.22, z = �2.15, p < .05). Thus, as in
Experiment 1, infants maximized in the face of both
single cues, and showed proportionally stronger predic-
tion when cued by Both Cues.
When presented with the New Cues, infants did not

alter their looking to the Correct location (b = �.14,
z = �.50, ns), but were marginally more likely to look the
Incorrect location (b = .61, z = 1.78, p = .08). As shown
in Figure 3, infants showed no discrimination between
the Correct and Incorrect sides in the presence of the
New Cues. These results thus rule out the possibility that
infants simply learned to look at the Correct location
following the offset of any cue. Infants did not show a
preference when presented with the New Cues, and
therefore likely learned cue-specific predictive probabil-
ities and not a general preference for the Correct side.
Further, Experiment 2 shows that the result for the Both
Cues trials is quite robust: infants showed improved
prediction in the face of Both Cues even after the three
non-reinforcing New Cues trials.

General discussion

Although development is generally accompanied by
increased efficiency (Kail, 1991), sometimes this effi-
ciency comes at a cost. For humans, the cost may include
reduced ability to learn language (Johnson & Newport,
1989). The less is more hypothesis proposes that young
children’s resource constraints are actually critical for
their success in learning language. Key evidence for this
claim has taken the form of artificial language learning
experiments. When exposed to inconsistent input, adults
probability match – reproducing this inconsistency in
their output. In contrast, children maximize, learning a
simple regular pattern. The evidence presented in this
paper strengthens and extends this hypothesis in two key
ways. First, we show maximizing in young children in a
novel domain. In addition to language learning and
explicit prediction tasks (Derks & Paclisanu, 1967;
Hudson Kam & Newport, 2005), maximizing is elicited
even in viewing visually presented probabilistic predic-
tors. This is strong evidence that the kind of processing
critical to the less is more hypothesis is a general property
of young learners. Second, evidence that children do not
show a dilution effect suggests that the resource con-
straints that lead to maximizing have important down-
stream consequences. Just as in language, in which the
nature of early learning can fundamentally change what
is learned down the line (Elman, 1993), what is learned
about probabilistic cues can fundamentally change the
way that they are combined.
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Figure 3 Cumulative hazard functions for each cue/location
combination for infants in Experiment 2. Each curve shows the
estimated cumulative probability of a predictive look to a
location (Correct/Incorrect) in the presence of a particular cue
(Strong/Weak/New/Both) over time. Infants predicted the
appearance of a reinforcer in the Correct location equally
under all cue conditions. However, relative to the Strong and
Weak cues they predicted the reinforcer on the Incorrect side
less in the presence of Both Cues and more in the presence of
the New Cues.
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Following other infant prediction experiments (e.g.
McMurray & Aslin, 2004; Kovács & Mehler), we
designed a task to test a perceptual analogue of the
dilution effect (Nisbett et al., 1981). While dilution is
traditionally studied in explicit reasoning tasks, compar-
ison between adults and infants necessitated construc-
tion of a perceptual paradigm. Nonetheless, our results
replicate those found in explicit reasoning tasks, sug-
gesting even more strongly that dilution is a fundamental
property of the adult cognitive system, and licensing
comparison to our younger participants (see also
Knowlton, Mangels & Squire, 1996, and Gluck, Shoh-
amy & Myers, 2002, for a similar task with adults).
Whereas adult participants encoded the strengths of
predictors in proportion to their probability of predic-
tion, and subsequently combined information from them
non-normatively, infants maximized in response to both
the Strong and Weak Cues and their combination
reduced prediction error. Thus, resource constraints
may not only prevent children from learning probabilis-
tic relationships that are too complex (in essence, over-
fitting the data – Zhu, Rogers & Gibson, 2009), they also
support prediction for multiple cues that have never been
experienced together (Te ́glás, Vul, Girotto, Gonzalez,
Tenenbaum & Bonatti, 2011).

Building on other work suggesting that the statistical
learning mechanisms involved in language are domain-
general (Kirkham et al., 2002; Fiser & Aslin, 2002;
Saffran, Pollack, Seibel & Shkolnik, 2007), these results
suggest that more normative statistical learning in young
infants may characterize other cognitive domains. For
example, statistical regularities between scenes and
objects play an important role in rapid object recognition
(Brockmole, Castelhano & Henderson, 2006; Oliva &
Torralba, 2006); cues that guide common grounding in
social interactions are complex, culturally specific, and
probabilistic (Bruner, 1975; Butko & Movellan, 2010;
Yuki, Maddux & Masuda, 2007); noisy data about
categories and category memberships often lead to rule-
like over-hypotheses (Colunga & Smith, 2005; Kemp,
Perfors & Tenenbaum, 2007). In all of these domains, as
in language, it is interesting to ask whether the develop-
ing statistical learner might have an advantage. Could it
be that for object recognition, cultural norm induction,
and categorization less is also more?

Nonetheless, the adult system does develop from the
infant system, and probability matching develops along
with it (Derks & Paclisanu, 1967). Why develop a non-
normative system? For a speculative potential explana-
tion, we return to language. Like young children, rhesus
monkeys maximize in response to probabilistic cues,
always selecting the most likely option (Treichler, 1967;
Wilson & Rolling, 1959), and when combining probabi-

listic predictors in a task similar to ours, monkeys
perform normatively (Yang & Shadlen, 2007). That is,
like infants, monkeys do not show the dilution effect.
But, unlike young children, these monkeys will not go on
to acquire language.

One of the difficulties in learning natural language is
dealing with exceptions. For instance, although conjugat-
ing an English past-tense verb most often involves
appending ‘-ed’, this is not always true. In fact, some of
the most frequently encountered verbs have a different
character (e.g. go becomeswent). Learning irregularwords
turns out to be quite difficult for children, who often
overregularize these words (e.g. turning go into goed;
Brown, 1973). Although estimates of the rates of such
regularization vary, they are known to be highest before
the age of 4 and to drop significantly by 7 or 8 (Marcus,
Pinker, Ullman, Hollander, Rosen & Xu, 1992; Maratsos,
2000; Maslen, Theakston, Lieven & Tomasello, 2004).
This seems to follow the same pattern found in the change
from probability matching to maximizing. While single-
mechanism accounts have been advanced that capture
some of the regularities demonstrated by children in their
rates and types of overregularization (e.g. Rumelhart &
McClelland, 1986; Plunkett & Marchman, 1993), none
successfully capture them all (MacWhinney, 1998; Pinker
& Ullman, 2002). Following Elman (1993), we propose
that what is missing from these accounts is developmental
change. In order to deal with the regularities in language –
regularities with exceptions – the cognitive system needs
to represent predictors in proportion to their probabilities.
Thus, it may be that for breaking into language, less is
more. But, for mastering language and other complex
systems, less must become more.
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Appendix

Eye-tracking details

Eye-tracking for all participants began with a calibration
procedure. Adult participants were calibrated using nine
points, one at each point of a three by three grid. To
expediate calibration, infant participants were calibrated
using five points: the four corners and the center.

The Tobii eye tracker recorded participants’ distance
from the screen and the location of both their left and
right eyes at 50 Hz. Each participants’ sequence of gaze
points was derived from their recorded gaze samples. If
the Tobii x and y coordinates for both eyes were on the
screen, gaze was estimated to be at their midpoint. If the
coordinates of only one eye were reliably recorded, those
coordinates were estimated to be the point of gaze.
Otherwise, the sample was marked as invalid. Distance
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was treated similarly. In order to correct for blinking or
other sporadic tracking failures, we interpolated over
short intervals of invalid samples. Up to three successive
invalid samples between two valid samples were inter-
polated in equal steps. Larger blocks of invalid samples
were not interpolated.
Finally, these time/x/y/distance–tuples were used to

estimate a series of fixations for each participant.
Successive samples were considered part of the same
fixation if they were within 1° of visual angle of each
other (using the arctangent computation described by
Kosslyn (1978) to convert from on-screen distances to

visual angles) and their summed duration was greater
than 100 milliseconds. Table A1 shows the proportion of
time during the 1.2s prediction window that participants’
fixation locations were on-screen.

Table A1 Proportion of valid eye-tracking samples in
the prediction window for participants in each experiment.
Boxes show mean (std err.)

Participants Exp 1: Adults Exp 1: Infants Exp 2: Infants

Prop. valid samples .76 (.03) .69 (.04) .69 (.03)
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