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Abstract

Cross-situational word learning, like any statistical learning problem, involves tracking the reg-

ularities in the environment. However, the information that learners pick up from these regularities

is dependent on their learning mechanism. This article investigates the role of one type of mecha-

nism in statistical word learning: competition. Competitive mechanisms would allow learners to

find the signal in noisy input and would help to explain the speed with which learners succeed in

statistical learning tasks. Because cross-situational word learning provides information at multiple

scales—both within and across trials/situations—learners could implement competition at either or

both of these scales. A series of four experiments demonstrate that cross-situational learning

involves competition at both levels of scale, and that these mechanisms interact to support rapid

learning. The impact of both of these mechanisms is considered from the perspective of a process-

level understanding of cross-situational learning.
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In any statistical learning problem, the learning system is exposed to a stream of

input information and tasked with discovering the underlying structure. However, the

information in the stream may not all be of equal importance. Consequently, it is to the

learner’s advantage to employ a discovery process that biases the acquisition of new

information in light of its likely informativeness (Billman & Knutson, 1996; Kruschke,

2001; Pearce & Hall, 1980). One way of producing such a process is through competi-

tion; a competitive discovery process is one in which evidence in favor of one structure

acts as evidence against another structure. Mechanistically, this may be realized through

processes in which stronger representations actively inhibit competing representations

and thereby make them even weaker. Competition of this sort reduces noise in the input
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and sharpens the signal, allowing the learning system to more quickly converge on the

underlying patterns. Competitive processes have been implicated in multiple linguistic

phenomena, including speech segmentation (Norris, McQueen, & Cutler, 1995), visual,

and spoken-word processing (Gaskell, 2003; Luce & Pisoni, 1998; Rodd, Gaskell, &

Marslen-Wilson, 2004; McClelland & Elman, 1986; Tanenhaus, Spivey-Knowlton,

Eberhard, & Sedivy, 1995), and grammatical parsing (Smolensky, 1996; Vosse &

Kempen, 2000). They are also found throughout the cognitive system in vision

(Blakemore, Carpenter, & Georgeson, 1970; Masland, 2001), selective attention (Beck

& Kastner, 2005; Desimone, 1988), action selection (Cisek, 2007), and decision making

(McKinstry, Dale, & Spivey, 2008; Spivey, Dale, Knoblich, & Grosjean, 2010). Thus, it

is reasonable to expect that competitive processes also play a role in statistical learning

of language. Here, we consider the problem in the context of cross-situational word-ref-

erent learning.

In the cross-situational word learning task (Yu & Smith, 2007), participants are

exposed to a series of learning trials each consisting of multiple words and referents.

Within an individual trial, there is no information about which words map onto which

objects (see Fig. 2). However, across multiple trials, co-occurrence frequencies between

words and objects provide the statistical information sufficient to determine which word

labels which object. Cross-situational word learning is a good experimental paradigm in

which to study the role of competitive process in statistical language learning for three

reasons. First, cross-situational word learning is an important phenomenon in its own

right. There is general agreement that one of the difficult problems in word learning is

ambiguity of reference (Gillette, Gleitman, Gleitman, & Lederer, 1999; Markman, 1990;

Yu & Smith, 2007). To which of many potential objects in a scene does a label refer?

Many studies have documented the processes by which children can reduce ambiguity in

a given naming event, using social, pragmatic, and attentional cues. The cross-situational

approach to language acquisition is concerned instead with the processes by which

ambiguity can be reduced by accruing information across instances (Gillette et al., 1999;

Siskind, 1996; Yu & Smith, 2007). Because it is a more recent proposal, however,

cross-situational word learning is not well understood mechanistically (Medina, Snedeker,

Trueswell, & Gleitman, 2011). Understanding, at a process level, how learners hone in on

a coherent system of word-referent pairs in this laboratory task may help us to understand

how learners in the real world acquire words even when, most often, no single naming

event provides certain information.

Second, cross-situational word learning is a specific example of the general problem of

statistical learning. Mechanisms that are found to be important for successful statistical

word learning are likely to be important for other kinds of human statistical learning. For

example, Aslin and colleagues have shown similar processes to operate in both auditory

and visual statistical learning (Fiser & Aslin, 2001; Saffran, Aslin, & Newport, 1996),

and Kirkham, Slemmer, and Johnson (2002) have argued that the two are instantiations

of a common mechanism. Finally, the structure of information presented in cross-situa-

tional learning experiments allows for the systematic examination of competition at two

levels: within and across trials.
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First, since each individual learning trial presents multiple words and multiple objects,

mappings between words and objects could compete such that mapping a word onto one

object within a trial could inhibit its mapping onto other objects on that same trial. Com-

petition at this local level, in which words within a single utterance compete for referen-

tial extent, has been a key component in an assortment of models of word learning

(Frank, Goodman, & Tenenbaum, 2009; Fazly, Alishahi, & Stevenson, 2010; McMurray,

Horst, & Samuelson, 2012; Siskind, 1996; Yu, 2008). In each of these cases, prior knowl-

edge of the words and items determines the relative strength of competing mappings, but

the items in competition—the words and objects—are present within a single, local,

learning instance. Local competition of this kind finds the best within-trial solution. How-

ever, local competition also allows learners to leverage knowledge of some of mappings

on the trial to learn other unknown mappings. For example, if the strength of a word-

object mapping A�a inhibits mappings other objects to A or other words to a, then the

learner may be better able to find the right mappings for other words and referents.

Second, co-occurrence frequencies between words and objects provide statistical infor-

mation across the entire set of trials such that evidence concerning elements not present

in the current trial may also enter into competition. That is, evidence acquired about a

word-object mapping on one trial can influence mapping that word onto other objects

even when the original object is not present. We operationally define global competition,

in contrast to local competition, as competition in which both elements of the competing

mapping need not be present in the same learning trial. For example, global, cross-trial
competition would be implicated if previous evidence for a mapping of word A to object

a inhibited mapping word A to object b on a trial in which object a was not present. That

is, by definition, global competition does not require the previously mapped object to be

present on subsequent trials for the past learning of the mapping to inhibit new mappings.

If the system prefers one-to-one mappings, this kind of cross-trial competition would

make for a very powerful learning device in which latent knowledge strongly constrains

the possibility of new learning. Such global competition could effectively reduce the

noise in the learning environment given that words are frequently used in the absence of

their referents (Gleitman, 1990). Competition at the global level has been conceptualized

within Clark’s (1987) principle of contrast, which posits that no two words can have

identical referential extent. Global competition is also implemented in a number of asso-

ciative models of language acquisition (Fazly et al., 2010; MacWhinney, 1989; Merriman,

1999; Regier, 2005; Yu, 2008), as well as in Bayesian models of word learning (Frank

et al., 2009; Xu & Tenenbaum, 2007). In these latter models, the size-principle imple-

ments a competition between positing more word-object links to better explain the input

and keeping the total lexicon small.

Competition at these two levels need not be mutually exclusive. In fact, some models

explicitly include competitive mechanisms that operate at both the local and global levels
(Fazly et al., 2010; Frank et al., 2009; Yu, 2008). By implementing competition at both

levels, the models become significantly more robust to noisy input. Global competition

speeds up the acquisition of individual mappings across time, and local competition lets

these mappings be used to learn other mappings. However, despite theoretical proposals
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about these kinds of competition in word learning, their use in many models of statistical

word-referent learning, and their relevance to the mechanisms underlying statistical word-

referent learning, they have not been empirically studied in the context of learning the

meanings of words across multiple individually ambiguous trials. Accordingly, in the

experiments that follow, we present human learners with cross-situational learning tasks

designed to investigate how competition operates at each level and how these levels of

competition interact.

To these ends, in each of the following experiments, participants were exposed to two

types of words: single words, which co-occurred six times with only one correct referent,

and double words, which each co-occurred six times with two different correct referents.

Since these two referents shared the same word, the two mappings should be in direct

competition. The experiments were designed to systematically manipulate the contexts in

which these competing referents appeared—both within and across trials—so as to study

local and global competition. In Experiment 1, both referents of each double word

always co-occurred with that word within the same learning trial. This structure provides

an opportunity for these mappings to compete both locally, within a single trial, as well

as globally, across trials. Impaired learning of such double words compared to single
words provide the first evidence for competition in cross-situational learning and sets the

stage for disentangling the roles of local and global competition in the following experi-

ments. In Experiment 2, the two competing referents were always encountered on sepa-

rate trials. Since they could not compete locally, this experiment established the

contribution of global competition. Experiment 3 was based on Experiment 2 but varied

the order in which the referents of double words were encountered to examine how past

learning influences global competition and to pit local and global competition against

each other. Finally, Experiment 4 used a novel method for measuring trial-to-trial learn-

ing in cross-situational learning tasks to simultaneously measure competition at both the

local and global level.
Before turning to the experiments, it is important to lay out what questions we do not

intend to answer. First, while we are using two-to-one mappings to investigate the opera-

tion of competitive processes in cross-situational word learning, these experiments are not

intended to be the definitive word on how children learn homonyms and synonyms. A

number of excellent empirical studies have documented the developmental time course of

children’s difficulties with many-to-one mappings, and potential factors that may mitigate

this difficulty (Casenhiser, 2005; Doherty, 2000, 2004; Liittschwager & Markman, 1994).

These studies are aimed at elucidating the competitive mechanisms that underpin accumu-

lation of co-occurrence information across multiple ambiguous instances. Understanding

the operation and dynamic interaction of these processes is essential in moving toward a

process-level account of statistical word learning (Smith, Colunga, & Yoshida, 2010).

Second, competitive processes can be implemented in a variety of architectures: in neural

networks (McClelland & Elman, 1986), in deductive hypothesis testing systems (Siskind,

1996), in exemplar models (Regier, 2005), in statistical machine learning systems (Fazly

et al., 2010; Yu, 2008) and in Bayesian ideal observer models (Frank et al., 2009). They

could be innately specified constraints specific to word learning (Clark, 1987; Markman,

4 D. Yurovsky, C. Yu, L. B. Smith / Cognitive Science (2013)



1990), or they could be general properties of the cognitive system (Landau, Smith, &

Jones, 1988; Regier, 2003). The present experiments do not discriminate among these dif-

ferent architectures or claims. However, what competitive processes in all these

approaches have in common is a shared outcome: sharpening the signal present in noisy

input, and a shared mathematical operation, normalization, in which strengthening one

candidate weakens the others. The unifying criterion is that word-object mappings are

acquired not only in parallel but also that the system treats them as dependent. Informa-

tion about multiple mappings interacts. The empirical question asked in the present exper-

iments is, in our view, prior to model building and differentiation (Yu & Smith, 2012).

What roles do local and global competition play in cross-situational word learning?

Although each of type of competition—local and global—could accelerate cross-situa-

tional word learning, the way in which they function and the way they interact implicate

different learning mechanisms.

1. Experiment 1

Following the cross-situational learning paradigm (Yu & Smith, 2007), we asked par-

ticipants to learn multiple word-referent pairs from a sequence of individually ambiguous

learning trials. On each trial, learners saw four objects and heard four words but were

given no information about which word referred to which object. In contrast to the origi-

nal experiments, however, each word heard on a trial did not label exactly one of the

present objects. Within an individual trial, some words labeled one object, some words

labeled two objects, and some words labeled none of the objects. Fig. 1 shows a sche-

matic of the learning situation.

If cross-situational word learning involves a competitive mechanism at either scale—
local or global—learning multiple referents for the same word should be difficult, as

mapping the word to one referent should inhibit mapping it onto the other. If competition

is local, and word-object mappings compete within a single trial, then each referent of a

double word should directly inhibit the other within each trial. If competition is global,
then accruing information about one referent of a double word on one trial should inhibit

Fig. 1. A schematic of the trial structure of Experiment 1. On each trial, participants encountered four words

and four referents, but the number of correct mappings for each word varied by type. Capital letters (e.g., A)
indicate words and lower case letters (e.g., a) indicate referents. Single words each had one correct mapping

per trial (e.g., B�b, C�c), double words each had two correct mappings per trial (e.g., A�a1 and A�a2,
F�f1 and F�f2) and noise words were not mapped to any referent (e.g., D, G). Single words and their refer-

ents are depicted in black, double words and referents in gray, and noise words in white.
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accruing information about that same word and its other referent on the next trial. Thus,

the primary goal of Experiment 1 is to demonstrate that competition occurs in this

experimental task by showing impaired learning in the case when there is more than one

referent for a word. This is because while competition would affect learning the mappings

of each word, it would be beneficial for learning the referents of single words, by limiting

mappings to other referents, but detrimental for learning referents of double words, which

requires learning two mappings.

1.1. Method

1.1.1. Participants
Forty-eight undergraduate students at Indiana University received class credit in

exchange for volunteering. None had previously participated in any cross-situational

learning experiments.

1.1.2. Stimuli and design
The stimuli were trials consisting of pictures of uncommon objects paired with auditor-

ally presented pseudo-words (see Fig. 2). These pseudo-words were computer generated

to broadly sample phonotactically probable English forms and were spoken by a synthetic

female voice in monotone. In total, 18 unique objects and 18 unique words were pro-

duced. The set of 18 words was further divided into six single words, six double words,

and six noise words. Single words behaved identically to words in other cross-situational

learning experiments, co-occurring on each appearance with exactly one correct referent

object. In contrast, each double word referred to two objects, both of which co-occurred

with it on each appearance. In total, single words co-occurred six times with their correct

referent, and double words co-occurred six times with each of their correct referents.

Thus, co-occurrence frequency of each correct referent was equated. Finally, noise words

Fig. 2. An example of a single ambiguous learning trial in the cross-situational paradigm. Participants saw

four objects and heard four pseudo-words that were mapped onto the objects. Words were assigned to objects

randomly, and screen position of objects was independent of the order in which words were spoken.
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co-occurred with approximately equal frequency with all objects in the set, and thus they

did not map consistently onto any referent. This allowed us to directly compare learning

of double words to learning of single words. Noise words were included to produce an

equal number of words and referents on each trial, preventing learners from immediately

noticing non one-to-one mappings.

Each training trial consisted of four words, heard serially, and four pictures of objects,

one in each corner of the screen. One of the words was a correct label for each of the

objects. Across the entire set of trials, each of the 18 words and objects appeared six

times, resulting in 27 total 4 word 9 4 object training trials. Of these 27 training trials, 2

contained four single words, and 14 contained two single words, one double word, and

one noise word. The remaining 11 contained two double words and two noise words.

Thus, while each trial always consisted of four words and four objects, the within-trial

mapping structure varied considerably from trial to trial and was rarely consistent with

one-to-one mapping (2 of 27 trials).

After training, participants were tested for their knowledge of the referents of each

word. On each test trial, participants heard one word from the training set and were asked

to rank each of four objects in order of their likelihood of being the referent of that word.

The set of alternatives for each single word consisted of its one correct referent, the refer-

ent of a different single word, and one correct referent for each of two different double
words. The set of alternatives for each double word consisted of both of its correct refer-

ents, the referent of a single word, and one referent of a different double word. Since

noise words mapped to no correct referents, the set of alternatives for each noise word

consisted of the referent of one single word and one referent for each of three different

double words.

1.1.3. Procedure
Participants were told that they would be seeing pictures of objects and hearing words,

and that they should try to determine which referred to which. They then engaged in a

training session, followed by a test session. At test, they received the following instruc-

tions: “You will now be tested on your knowledge of the word-object mappings. On each

testing trial, you will hear one of the words from training and see four objects. Please

rank the objects according to their likelihood of matching the word by clicking on them

in order from most likely to least likely.” The test would not advance to the next trial

until all four objects had been selected.

This method of testing was chosen to balance three important constraints: getting a

clean and complete measure of participants’ knowledge, minimizing the chance of biasing

them toward or away from one-to-one mappings, and keeping testing reasonably short in

length. This ranking procedure provided a better solution than a number of other alterna-

tives. For instance, a simple alternative-forced-choice test would either not provide infor-

mation for both referents of each double word or could potentially bias participants to

prefer or disprefer one-to-one mappings. An exhaustive matching test (e.g., “does this

sound match this picture”) would require too many trials due to the large number of

words and referents. Asking participants to name the pictures would not have these
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problems, but it could interact quite differently with learned mappings and would be even

more difficult to compare to previous cross-situational word-learning studies.

1.2. Results and discussion

To be given credit for knowing the correct referent for a single word, participants were

required to rank it as the most likely referent. That is, it had to be their first guess. Test

trials for each double word contained both of that word’s correct referents. If a participant

selected either of the correct referents as his or her first guess (e.g., A—a1 x x x or A—a2 x
x x), the participant was given credit for knowing at least one correct referent. To get

credit for knowing both referents for a double word, the participant needed to select

both of the referents in either order as guesses one and two (e.g., A—a1 a2 x x or A—
a2 a1 x x). Because these different kinds of words have different chance levels of accu-

racy, we developed a statistical analysis to correct for this and present these results

after standard t-test analyses.

Fig. 3 shows average test accuracy for participants in Experiment 1. Participants

showed better than chance knowledge of the referents for single words [Ms ¼ 0:454,
SDs ¼ 0:264, chance = 0.25, t(47) = 5.29, p < .001] and not only one [M� 1 ¼ 0:698,
SD� 1 ¼ 0:210, chance = 0.5, t(47) = 6.47, p < .001] but both [Mboth ¼ :301,
SDboth ¼ :146, chance = 0.17, t(47) = 6.32, p < .001] referents for double words. Thus,

relative to chance, participants learned both one-to-one and two-to-one mappings despite

the ambiguity in their input.

However, participants were significantly less likely to learn both referents of a double
word than the one referent of a single word [t(47) = 3.68, p < .001]. As chance-level
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Fig. 3. Accuracy at test for each of the word types in Experiment 1. Error bars represent � SE. Dotted lines

indicate chance levels of performance. Participants learned not only the referents of single words but also

both referents for double words. However, they learned the two referents of double words significantly less

well than the single referents of single words.
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performance due to guessing on these two types of tests is different, a direct comparison

of absolute accuracy is unfair. We present next the rationale for the analysis we developed

to make a fair comparison. The starting assumption is that each correct answer at test

could be due to one of two mutually exclusive possibilities: (a) the participant knows the

correct mapping for the tested word, or (b) the participant guesses correctly. At test, sup-

pose that a participant gave some number n of correct responses. This participant may

have actually known any number of correct mappings less than or equal to n. The remain-

ing correct responses must be explained by guessing. On the basis of the probability of

guessing correctly in each test condition, our analysis produces a maximum likelihood

estimate of the number of correct responses due to (a) word-object knowledge and the

number due to (b) guessing. The number of known mappings can then be converted to a

proportion, as in the standard analysis, and compared directly across word types. In all

cases, this alternative analysis produced outcomes consistent with the standard t-test analy-

ses of overall performance. Full details for the maximum-likelihood analysis can be found

in the Appendix.

This guessing analysis was used to infer the proportion of single words for which partic-

ipants knew the correct referent (M = 0.39), and the proportion of double words for which

participants knew only one (M = 0.34) versus both (M = 0.21) referents. Because these

data need not be normally distributed, we compare single word learning to double word

learning with a non-parametric Mann–Whitney U-test. Participants were significantly less

likely to learn both referents of a double word than they were to learn the one referent of

a single word (z = 2.996, p < .01). That is, within the experiment, two mappings made up

of a single word and two different referents do not act like two independent mappings

(two words and two different referents). This means there is competition of some kind.

Experiment 1 thus provides evidence that competition is involved in cross-situational

learning. But it does not determine the type of competition. Both of the correct referents

of each double word were available on each trial, and thus they could have directly

inhibited each other through local competition. Alternatively, stored information about

co-occurrence from prior trials could have resulted in each referent, inhibiting the other

on future trials through global competition. To help in disentangling these two kinds of

competition, consider a sample trial containing words {A, B, C, D} and referents {a1, a2,
b, c}. One possibility is that cross-situational learning involves local competition in

which pairing a word to an object on a given trial reduces the probability of pairing that

word with other objects and that object with other words on that trial. In this trial, if A is

paired with a1, it will be less likely to be paired with a2. If it is instead paired with a2,
the strength of its local pairing with a1 will be reduced. Thus, on each trial containing A,
on average less mapping strength will be accrued for A�a1 and A�a2 than for B�b or

C�c. Since a1 and a2 compete locally on each occurrence of A, learners will be less

likely to know both double pairings (A�a1, A�a2) than a given single pairing (B�b).
If cross-situational learning involves primarily global competition, then the key factor

might be not potential mappings presented within a trial, but rather all the mappings one

has been exposed to across trials. In such a mechanism, the objects within a trial do not

interact directly but do so through stored mapping information. Consider again the same
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trial: {words: A, B, C, D; referents: a1, a2, b, c}. Through global competition, the previ-

ously acquired strength of mapping A�a1 will reduce the amount strength stored for

A�a2 even without a local competition between A�a1 and A�a2, and previous knowl-

edge about mapping A�a2 will reduce the amount stored for A�a1. Thus, even if no

computation relates the words and objects within a trial to each other directly, global
competition across trials should produce a decrement for learning both double mappings

(A�a1, A�a2) relative to a single mapping (B�b). Following this rationale, the goal of

Experiment 2 is to establish a role for global competition.

In Experiment 2, we expose participants to distributional information in which only

one of the correct referents of each double word is available on each trial. If, for cross-

situational learners, out of sight is out of mind, then without local competition in the

sense of two vying mappings within the same trial, participants should not show impaired

learning of double words. If, in contrast, knowledge of a non-present mapping influences

the mappings formed within a trial, then learning of the double mappings should suffer

relative to the single ones just as in Experiment 1.

2. Experiment 2

In this experiment, participants were again exposed to both single words and double
words, but each appearance of a double word coincided with only of its correct referents.

Co-occurrences with each of the two referents were interleaved randomly over the entire

set of training trials (see Fig. 4 for a schematic). If competition operates only at the local
level, participants in Experiment 2 should have been able to learn the two referents of

each double word as well as the one referent of each single word. In contrast, if there is

competition at the global level, learning of double words should again have been

impaired.

2.1. Method

2.1.1. Participants
Forty-eight undergraduate students at Indiana University received class credit for vol-

unteering. None had previously participated in Experiment 1 or any other cross-situational

learning experiments.

2.1.2. Stimuli and design
Stimuli for Experiment 2 was similar to those for Experiment 1. Trials were again com-

posed of four pseudo-words and four pictures of objects; 12 words and 18 objects were

drawn from the set used in Experiment 1. The 12 words were divided into six single words
which mapped onto one object referent each and six double words which mapped onto two

objects each. Trials were presented as before: Four objects were seen in the four corners of

the screen, and four words were presented serially from loudspeakers. Each of the single
words appeared six times, and each of the double words appeared 12 times, six times with

each of its correct referents. This again produced 27 total 4 word 9 4 object training trials.
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After training, testing proceeded as in Experiment 1. For each word, participants were

again asked to rank four possible referents in order of likelihood. The set of alternatives

for each double word contained both of its correct referents along with two foils; the set

of alternatives for each single word contained its one correct referent and three foils.

2.1.3. Procedure
Participants were given the same instructions as before—that they would be seeing

objects and hearing words and that they should determine to which object each word

referred. They then engaged in a training session, followed by a test session. Testing was

again assessed via 4-alternative ranking.

2.2. Results and discussion

As in Experiment 1, credit was given for knowledge of the referent of a single word if

the correct referent was the participant’s first choice. Credit for knowing at least one ref-

erent of a double word was given to participants who selected either of the word’s refer-

ents as their first choice. Credit for knowing both referents was given only if choices one

and two were both correct referents in either order.

Fig. 5 shows test results for Experiment 2. Participants successfully learned referents

for single words [Ms ¼ 0:40, SDs ¼ 0:247, chance = 0.25, t(47) = 4.09, p < .001] and,

again, they learned referents for not only one [M� 1 ¼ 0:58, SD� 1 ¼ 0:277, chance=.5,
t(47)=2.08, p < .05] but both [Mboth ¼ 0:24, SDboth ¼ 0:203, chance = 0.17, t(47) =
2.49, p < .05] referents of the double words. As in Experiment 1, although participants

learned all types of mapping at above-chance levels, they were significantly less likely to

learn both referents of a double word than they were to know the one referent for a single
word [t(47) = 3.81, p < .001]. We again applied the guessing analysis to estimate the

proportion of single words (M = 0.31) participants knew, and the proportion of double
words for which participants knew only one (M = 0.24) versus both (M = 0.15) referents.

As in Experiment 1, participants were significantly less likely to learn both referents of a

double word than they were to learn the one referent of a single word (z = 3.03,

p < .01), a result that indicates competition across trials.

Fig. 4. A schematic of the training structure in Experiment 2. In contrast to Experiment 1, the two referents

of each double word now appeared randomly on different trials throughout training. Overall, exposure to each

correct co-occurrence frequency was identical. Single words and their referents are depicted in black; double
words and referents are depicted in gray. There were no noise words in Experiment 2. Capital letters indicate

words and lowercase letters indicate referents.
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The results thus suggest global competition. Knowledge of one word-object mapping

alters the acquisition of a second referent for the same word even when the first referent

is not available within the same trial. It is worth noting that while Experiment 2 had the

same number of learning trials as Experiment 1, and learners were exposed to the same

word-object co-occurrence information, there were differences in timing. In Experiment 1,

learners would have to divide their attention between the two referents for a double word

within a single trial. Because in Experiment 2 participants did not have to divide their

attention in this way, we might have expected improved learning (Yu & Smith, 2011).

However, this was not the case. Instead, learning in Experiment 2 was slightly worse.

One possible explanation for this result is that each occurrence of one referent of a dou-
ble word meant a non-occurrence of the other. Participants thus could have treated this

non-occurrence as implicit negative evidence (see, e.g., Ramscar, Yarlett, Dye, Denny, &

Thorpe, 2010). Thus, while implicit negative evidence is treated as deriving from alterna-

tive positive evidence in competition models (e.g., Merriman, 1999, see also Xu & Ten-

enbaum, 2007, for a review), non-occurrence of a word-object mapping could also have a

separate additional role in reducing evidence for that mapping. Since assessing this role

empirically would require training participants with an unequal number of words and

objects, and thus very probably change their learning strategies, we do not pursue it fur-

ther here. Nonetheless, understanding the independent contributions of competition and

non-occurrence would be an interesting question for further research.

In either case, since learning results were no better in Experiment 2 than Experiment 1,

global competition is likely to be a potent force. This global competition could be

implemented in one of two ways: either after all information has been acquired, and

thus independently of local competition (e.g., Frank et al., 2009), or trial-by-trial as
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Fig. 5. Accuracy at test for each of the word types in Experiment 2. Error bars represent � SE. Dotted lines

indicate chance levels of performance. Participants learned the referents of single words, and both referents

for double words, but less well than in Experiment 1. Furthermore, they were significantly more likely to

learn the one referent of a single word than both referents of a double word.
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information is being accrued and thus potentially interacting with local competition

(e.g., Fazly et al., 2010). One way to measure whether global competition operates

trial-by-trial is through order effects.

If global competition occurs on-line from trial-to-trial, then the order in which partici-

pants are exposed to the two referents for each double word should matter. If global com-

petition operates through batch-like statistics at the end of learning (or at test), order

effects would not be expected. Accordingly, in Experiment 3, the trials from Experiment

2 were rearranged such that participants received all exposures to one correct referent for

each double word before seeing the other. If global competition occurs at the end of

training, then learning results should be identical. If, in contrast, trial-by-trial global com-

petition is the primary mechanism of competition, then participants should be signifi-

cantly more likely to acquire the first referent of a double word but significantly less

likely to acquire both. Such a pattern was found by Gebhart, Aslin, and Newport (2009)

in a similar statistical speech segmentation task.

3. Experiment 3

In Experiment 3, participants again encountered cross-situational learning trials in

which half of the words co-occurred with equal frequency (six times) with two correct

referents. As in Experiment 2, only one of these correct referents appeared on each trial.

However, whereas in Experiment 2 these appearances were randomly interleaved, in

Experiment 3 they were strictly ordered (see Fig. 6). Trials in the first half of the experi-

ment presented only one of the two correct referents of each double word, and trials in

the second half presented exclusively the other correct referent. Thus, participants

received all six exposures to one correct referent before ever seeing the other.

If competition is primarily global, and occurs only after all training information has

been accumulated, there should be no effect of the temporal order of individual trials and

performance in Experiment 3 should be identical to Experiment 2. In contrast, if global
competition emerges trial-by-trial and does not interact with the other local mappings that

may be formed within a trial, then one would expect a clear order effect in Experiment 3

Fig. 6. A schematic of the training structure in Experiment 3. In contrast to Experiment 2, the two referents

(called early and late) of each double word were separated across training. The first six occurrences of a dou-
ble word appeared with its early referent, and the second six appeared with its late referent. Single words and

their referents are depicted in black; double words and referents are depicted in gray. Capital letters indicate

words and lowercase letters indicate referents.
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with the first referent being learned better than the second for the double words. Thus,

both hypotheses about global competition predict that double words will show a decre-

ment relative to single words as found in Experiments 1 and 2, and the key question is

whether that decrement is greater for the second learned referent (a result that implicates

trial by trial global competition) or roughly equivalent (a result that implicates post-learn-

ing or batch competition). Predictions are more complicated if there are interactions

between global and local competition. Briefly, double words are not the only words pre-

sented on each trial and if local competition works within a trial for learners to find the

one best referent for each word, then local within-trial competition in the second half of

the experiment could help the learner map double words to their correct second referents.

3.1. Method

3.1.1. Participants
Forty-eight undergraduate students at Indiana University received class credit for vol-

unteering. None had previously participated in Experiments 1 or 2 or any other cross-situ-

ational learning experiments.

3.1.2. Stimuli, design, and procedure
Stimuli for Experiment 3 were identical to those in Experiment 2 except for the order

in which trials were presented. In Experiment 2 the two referents of each double word

were interleaved randomly across the set of training trails. In contrast, in Experiment 3

they were ordered such that one of the referents co-occurred with the first six appearances

of a double word, and the second referent co-occurred with the remaining six appear-

ances. Fig. 6 shows this new training scheme. In the analysis, we will refer to the referent

which occurred first as the early referent, and the one which occurred second as the late

referent. The testing procedure was also identical to that of Experiment 2.

3.2. Results and discussion

As in previous experiments, knowledge of word-object mapping was assessed via

four-alternative ranking. The set of four alternative objects for each word was constructed

identically to Experiment 2. Fig. 7A shows mapping accuracy for participants in

Experiment 3.

Overall, participants successfully learned referents for single words [Ms ¼ 0:45,
SDs ¼ 0:30, chance = 0.25, t(47) = 4.69, p < .001] and again for not only one

[M� 1 ¼ 0:73, SD� 1 ¼ 0:24, chance = 0.5, t(47) = 6.53,p < .001] but both

[Mboth ¼ 0:40, SDboth ¼ 0:30, chance = 0.17, t(47) = 5.42, p < .001] referents for

double words. However, in contrast to the previous experiments, participants were not

significantly less likely to know both referents of a double word than they were to know

the single referent for a single word [Ms ¼ 0:45, Mboth ¼ 0:40, t(47) = 1.53, n.s.]. The
guessing analysis again confirmed standard t-test analysis. The analysis described in the

Appendix allowed us to infer the proportion of single words (M = 0.36) participants

14 D. Yurovsky, C. Yu, L. B. Smith / Cognitive Science (2013)



knew, and the proportion of double words for which participants knew only one

(M = 0.22) versus both (M = 0.34) referents. A Mann–Whitney U-test showed that partic-

ipants in Experiment 3 did not learn single words more successfully than they learned

both referents of double words (z = 0.122, n.s.). Thus, in contrast to previous experi-

ments, the results do not show direct evidence of competition. The results therefore do

not support either of the two global competition alone hypotheses, both of which pre-

dicted some degree of decrement for double words versus single words (for related results

in phonological contrast learning, see also Perrachione, Lee, Ha, & Wong, 2011).

However, although this measure of participants’ test accuracies did not show evidence

of a competition, there is one more place to look. Since the two referents of each double
word appeared in a consistent order, the early referent for the first six occurrences and

then the late referent for the second six, one might expect them to be treated differently

at test. In particular, if global competition is applied trial-by-trial as information is

accrued, then the early referent should be better learned. Did order matter? When partici-

pants correctly selected both referents in their first two guesses (Mboth ¼ 0:4), they were

marginally more likely to select the early referent first [Me ¼ 0:24, SDe ¼ 0:23,
Ml ¼ 0:16, SDl ¼ 0:20, t(47) = 1.77, p = .08]. These results are shown in Fig. 7B.

Experiments 1 and 2 showed that competition plays a role in cross-situational learning,

and that mappings can inhibit each other even when both are not present within a single
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Fig. 7. Test outcomes for Experiment 3. (A) Accuracy at test for each word type. Error bars represent � SE.
Dotted lines indicate chance levels performance. Participants learned the referents of single words, and both

referents for double words. In contrast to participants in Experiments 1 and 2, participants in Experiment 3

were not significantly more likely to know the one referent of a single word than both referents of a double
word. (B) When participants learned both of the referents for a double word, they selected them in one of

two orders: early first or late first. The bars indicate the proportion of each of these two selection orders.

Error bars represent � SE. Participants were marginally more likely to select the early referent of a double
word first.
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trial. That is, there is some form of global competition. But the structure of Experiment 3

removed these competitive effects almost entirely. The likely explanation is that local
competition counteracted the effects of global competition from previously learned word-

referent pairings. In contrast to Experiments 1 and 2, learners received six exposures to

double-early mappings in the first half of training. Because of the lack of ambiguity in

this to-be-double pairing, local competition in the first half of training may have allowed

participants to acquire significantly more information about the correct mappings of the

single words on these trials. Then, while learning double-late mappings would be inhib-

ited by global competition, it would be supported by local competition from the other

already well-learned mappings present within a trial.

By this interpretation, cross-situational learning stems from both global and local com-

petition, and both processes unfold trial-to-trial as information is acquired. Global compe-

tition protects old mappings from noisy information, and local competition leverages

prior mapping knowledge to speed the acquisition of new mappings. If we are correct,

then we should be able to uncover more direct evidence of competition not only at test

but during training. The next experiment was designed to test these predictions. In Exper-

iment 4, participants were exposed to the same information as in Experiment 3, but this

time, measures of learning were collected on each trial. If our hypothesis is correct, then

these trial-by-trial measures should provide evidence of competition at both levels.

4. Experiment 4

The ranking procedure used to assess learning in the previous experiments provided

information only about participants’ knowledge at the end of training. The goal of this

experiment was to measure learning trial by trial as training unfolds. As testing may

interact with training (McClelland, 2006; Roediger & Karpicke, 2006), we chose the indi-

rect approach of asking participants to give their confidence that they knew the correct

label for each object. More specifically, at the end of each training trial, a bar containing

the numbers 1-10 appeared under each object. Participants were asked to indicate their

level of confidence in their knowledge of the correct label for each object on this scale.

Since these judgments were made on each trial, analyses could be conducted to determine

how knowledge for individual words grew across exposures, and how knowledge of dif-

ferent words interacted within a single trial. From this data, we could then ask more

detailed questions. For instance, can a participant’s knowledge of some of the words on a

trial be used to predict knowledge for others?

4.1. Method

4.1.1. Participants
Forty-eight undergraduate students at Indiana University received class credit for vol-

unteering. None had participated in any of the previous experiments or any other cross-

situational learning experiments.
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4.1.2. Stimuli and design
Stimuli for Experiment 4 were identical to those in Experiment 3. Double words again

co-occurred six times with their early referent in the first half of training, and then six

times with their late referent in the second half of training. Participants were not made

aware that such a switch would occur.

4.1.3. Procedure
Training in Experiment 4 proceeded in exactly the same manner as Experiment 3

except for the introduction of knowledge judgments. At the end of each trial, a bar con-

taining the numbers 1–10 appeared under each of the four objects on the screen. Using

this scale, participants were asked to indicate their level of confidence in their knowledge

of the correct label for each object. After a judgment was made for all four objects, a

“Next” button appeared on the screen. Participants could revise any of their judgments by

clicking on a bar again. When participants clicked “Next” button, the next trial began.

Due to an extended time in training, testing in Experiment 4 was also slightly different

from the previous experiments. Whereas participants in Experiments 1–3 were asked to

make four responses at test—to rank the four alternatives in order of likelihood—partici-

pants in Experiment 4 made only one response. They gave only their best guess.

4.2. Results and discussion

Participants were tested for their knowledge of correct referents for each word in the

training set by selecting a single best referent from a set of four alternatives. As a result,

for double words, participants needed to make an active choice between the early and late

referent. Before examining participants’ knowledge judgments, we first verify that test

results are comparable to previous experiments.

Fig. 8A shows participants’ accuracies at test. As in previous experiments, participants

successfully learned the referents for single words [Ms ¼ 0:61, SDs ¼ 0:31,
chance = 0.25, t(47) = 8.07, p < .001] and selected either the early or late referent of

each double word at levels significantly above chance [Md ¼ 0:81, chance = 0.5,

SDd ¼ 0:22, t(47) = 9.57, p < .001]. Between these two referents, participants were sig-

nificantly more likely to choose the early over the late referent [Me ¼ 0:47, SDe ¼ 0:25,
Ml ¼ 0:34, SDl ¼ 0:22, t(47) = 2.18, p < .05, shown in Fig. 8B]. This is the same pat-

tern of results found in Experiment 3, again providing evidence for competition at the

global level in the preference for early over late referents.

When compared to participants in Experiment 3, those in Experiment 4 were signifi-

cantly more likely to choose the correct referent of each single word (t(94) = 2.57,

p < .05) and were marginally more likely to choose either of the two referents of each

double word [t(94) = 1.69, p < .1]. Why did participants perform better in Experiment 4

than in Experiment 3? One possibility is that the addition of the knowledge judgments trial

by trial gave participants more time to encode the words and objects presented on each

trial. Alternatively, the benefit could have been not just a function of time but also a func-

tion of increased engagement in the task which may have resulted in deeper processing
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(Craik & Tulving, 1975). Finally, it is possible that the difference in testing itself may

have driven the effect. However, the overall pattern is the same as in Experiment 3 and

thus the analyses of trial-by-trial judgments over the course of training should be revealing

about the cross-trial roles of global and local competition.

To this end, a first step is to validate the judgment measures by asking whether partici-

pants’ trial-by-trial knowledge judgments were correlated with learning results at test. If

so, they can be used as to infer learners’ internal learning state in real-time learning. One

simple way to estimate the predictive power of these judgments is to ask whether they

predict a correct result at test. We thus analyze these judgments via logistic regression,

with test response as the outcome variable, and confidence judgment on each occurrence

of an object as predictors. Participants responses at test were coded either 0 (selected

incorrect referent) or 1 (selected correct referent). Regression coefficients for this model,

seen in Table 1 below, show that participants’ judgments began to be significant predic-

tors of test response from the second occurrence of an item.

When tested for their knowledge of the referents for double words, participants were

significantly more likely to select early referents. When does this effect arise? Fig. 9

shows mean judgment scores provided by participants on each of the six occurrences of

each type of referent. While the referents of single words and early referents of double
words grew similarly—with the last occurrence of an early referent even judged margin-

ally better known (t(47) = 1.90, p = .06), judgments of late referents were strikingly dif-

ferent. From their second occurrence—the first which is a significant predictor of test

behavior, judgments for late referents were significantly lower than those of either other

type of referent [tsingle�lateð47Þ ¼ 3:21, p = <.01, tearly�lateð47Þ ¼ 2:78, p = <.01]. Global
competition was thus in effect from the earliest exposures of a late referent. Further,
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Fig. 8. Test outcomes for Experiment 4. (A) Accuracy at test for each word type. Error bars represent � SE.
Dotted lines indicate chance levels performance. Participants learned the referents of single words, and at

least one referent for the double words. (B) When tested with the double words, participants could select

either the early or the late referent. The bars indicate the proportion of each of these two selections. Partici-

pants were significantly more likely to select the early referent as the correct referent of a double word.
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evidence of competition is seen all the way through to the judgments made on the late

referents’ final appearances. This means that for any given occurrence of a double word

and its late referent—for example, the third occurrence—the knowledge judgment was

likely to be lower than the comparable (e.g., third) occurrence of that double word and

its early referent. Thus, prior knowledge inhibited the acquisition of new knowledge

through global competition.

What about local competition? Because judgments were collected on each trial, we can

directly test whether local competition within each trial may have helped participants in

Experiment 4 learn word-object mappings. To this end, we consider a linear regression

analysis, in which the outcome to be predicted is the confidence rating assigned to a

referent object on any given trial. We first include referent type as a predictor. Then,

because knowledge should build on itself, we expect judgments on successive occurrences

to be correlated. We thus add judgment rating on the previous occurrence as a further pre-

dictor. Finally, if participants are applying local competition, then knowledge of these other

objects should allow their labels to be ruled out as the potential label of the target object.

We thus include an additional regressor—the mean of the judgments made for all three

other referents on their previous occurrences. In cases where a referent had not previously

occurred, it was assigned a judgment value of 1. As shown in Table 2, all regressors were

Table 1

Regression coefficients (Betas) for logistic regression predicting test accuracy on each occurrence

Occurence 1 2 3 4 5 6

Betas �.022 0.106��� 0.132��� 0.170��� 0.172��� 0.200���

Note. *** = p < .001.
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Fig. 9. Mean judgment value given for each referent as a function of occurrence number (1–6) and referent

type (single, early, or late). All judgments grew over occurrence number, but single and early judgments were

significantly higher than late judgments from their second occurrence.
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significant predictors. Thus, not only did previous knowledge of a word-referent pairing

predict its judgment, previous knowledge of other co-occurring referents did as well.

By way of example, consider a trial containing objects {a,b,c,d}. Suppose further that

this is the fourth occurrence of a, the third occurrence of b, the second occurrence of c,
and the fifth occurrence of d. Now suppose we are trying to predict the confidence that a

participant had for his or her knowledge of the correct label for object a. What the

regression model shows is first, that the confidence assigned to a on its previous (third)

occurrence can be used to predict confidence on this occurrence. However, beyond this,

the model shows that the confidence assigned to each of the other referents on their pre-

vious occurrences (b’s second, c’s third, d’s third) adds information about the value

assigned to a. That is, knowledge of some of the referents of each trial increases the

information acquired about the mappings of other referents.

Because the first half of training consisted of words that mapped onto object one-to-

one—only single and early referents—participants were able to learn some of the single
words referents. Then, in the second half of training, participants used local competition

within-trials to reduce uncertainty about the correct labels for late referents. This explains

the acquisition of the second referents of double words.

Overall, the results provide strong evidence for global competition: Learning a word’s

early referent inhibited the acquisition of that word’s late referent from the outset, and

continued to do so through all of its occurrences, consistent with a trial-by-trial form of

global competition. However, participants nonetheless learned two referents for each dou-
ble word. Analysis of the growth in knowledge judgments on each trial suggests that local
competition—competing mappings within a trial—helped participants learn the second ref-

erent. Once some of the single word-referent mappings were sufficiently strong, these

words would be inhibited as possible candidates for the late referents. Thus, competition at

the local level was able to compensate for the operation of competition at the global level.

5. General discussion

In cross-situational learning experiments, participants are exposed to a series of

individually ambiguous learning trials, each containing multiple words and objects.

Table 2

Coefficients (Betas) for linear regression predicting

referent judgment values

Parameter Beta

Intercept .858���

Single .690���

Early .879���

Previous judgment .476���

Avg. other ref. judgments .407���

Note. *** = p < .001.
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Nonetheless, across these trials, they successfully learn multiple word-object mappings.

One way that humans could do this would be to maintain only a single hypothesis for the

referent of each word and to update this hypothesis only when it is disconfirmed (Medina

et al., 2011). Such a model is plausible, but it would need significant revision to explain

above-chance learning of two-to-one mappings in all four of these experiments, as well

as the results of other recent studies of statistical word learning (e.g., Smith, Smith, &

Blythe, 2011; Vouloumanos, 2008). An alternative possibility for successful cross-situa-

tional word learning would be to track and store all of the co-occurrences on all trials,

and then to determine the correct mappings at the end (Frank et al., 2009; Vouloumanos,

2008; Yu, 2008). However, these experiments make such a model unlikely as well.

Instead, these results suggest a middle ground: Learners may use past knowledge and the

set of words and objects available on each individual trial to determine which subset of

the input they store. In this way, they may select a more coherent set of mappings within

each trial and consequently, trial-by-trial, reduce the ambiguity in their input. The entire

pattern of results provides clear evidence for both global competition across trials and

also local competition within trials. These results thus suggest that a mechanistic under-

standing of statistical learning will require understanding how within-trial information

activates past learning, and how cross-trial learning and within-trial input interact. This

level of analysis will be critical to understanding how statistical learning and memory

constraints interact to produce what look to be qualitatively different learning strategies

as ambiguity scales up (Medina et al., 2011; Smith et al., 2011; Yu & Smith, 2012).

The four experiments in this article contribute to this discussion through three main

findings. First, they provide evidence that both local and global competition are involved

in cross-situational learning. That is, the set of mappings formed on a given trial depends

both on prior information about the words and objects within the trial, and on prior infor-

mation about the mappings of the present words with other, non-present, objects. Second,

they show that global competition is not an operation that is applied merely at decision

time but operates trial-by-trial as does local competition (Experiments 3 and 4). Finally,

they provide evidence that the two mechanisms interact, such that local competition can

compensate for global competition to support the acquisition of two-to-one mappings.

Even though global competition can be quite potent (Experiment 2), the local assignment

of word-object links within a trial is a dominant force (Experiments 3 and 4). These

results lead naturally to a process-level account of cross-situational learning.

5.1. Local and global interaction: Toward a processes-level account

These four experiments implicate a cross-situational word learning process in which

words and objects compete for mapping strength (MacWhinney, 1989). Trial-by-trial, the

amount of evidence acquired for a particular word-object pairing depends both on the

words and objects present, and on memory for their other associations. Here we sketch a

conceptual, process-level account of how such a system might function. This is important

because the vast majority of recent models of cross-situational learning (e.g., Blythe,

Smith, & Smith, 2010; Frank et al., 2009; Fazly et al., 2010; Yu, 2008) have taken a
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batch-statistics or corpus-level approach (although, c.f. Horst, McMurray, & Samuelson,

2006) and have not compared their learning mechanisms directly to measures of human

performance. The only recent counterexample, from Smith et al. (2011), models a version

of cross-situational learning in which the set of candidate referents for each word is com-

pletely non-overlapping. Thus, there was no chance for competition in their task.

In the introduction, we noted explicitly that competition—at both levels—could be,

and has been, implemented in a variety of model architectures. We again reaffirm that

statement here. However, for the sake of clarity of exposition, we will adopt associative

terminology to present the conceptual model. We begin by considering what information

might be acquired on a trial in the middle of training with four words {A,B,C,D} and four

referents {a,b,c,d}. Learning on this trial can be considered as a combination of two pro-

cesses by which associations in memory are updated (see also Frank et al., 2009; Fazly

et al., 2010). In one process, words and objects are sorted out locally. The probability

that a word and object are paired (e.g., A�a) is proportional to the prior strength of that

association (A�a), and inversely proportional to (a) the strength of the associations

between that word and all other objects present on that trial (A�b, A�c, A�d), and
(b) the strength of the associations between that object and all of the other words present

within the trial (B�a, C�a, D�a).
If the word D and object d have not been previously encountered, local competition

would produce a bias to pair the two, as all of the other words would inhibit mapping D
onto their more likely referents (e.g., D�a would be inhibited by A�a, B�a, C�a;
D�b would be inhibited by A�b, B�b, C�b, etc.). Local competition can also sup-

port the acquisition of a second referent (as in Experiments 3 and 4). If referent b has

never been previously encountered, but A�a, C�c, and D�d are well established, and

word B has been previously strongly associated with some other referent x, then, the asso-

ciation of each of the words with b will be inhibited by their associations with the other

objects on the trial. However, this inhibition will be much larger for A, C, and D as the

trial contains objects with which they are strongly associated. For B, the trial contains

only weak associates, and thus it will be most likely to be paired with b.
Via the second process, global competition moderates the updates made to associative

strengths between the words and objects that have been paired off. In this process, the

change in associative strength between a word and object (e.g., A�a) is proportional to the

strength of the current association in memory and inversely proportional to the other asso-

ciations in memory for that word (e.g., A�b, A�e, A�g). Mechanistically, this could

consist of a single normalized update, or it could be a simple associative update followed

by normalization via a different mechanism (see, e.g., Apfelbaum & McMurray, 2011).

Either would produce an effect of global competition. Importantly, this global competition

is agnostic to the set of candidate referents on the trial, and all stored associations play a

role. Global competition is important for stabilizing word-referent pairings in the face of

noise in the input. For instance, if A has been strongly associated with a, and a is absent

on the current trial, any change in associative strengths between A and other referents will

be small because of this previous strong association. Global competition explains the

results of Experiment 2, in which two referents for the same double word are hard to learn
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even when they never co-occur. It also explains the decrement in confidence for the sec-

ond referent of each double word shown by participants in Experiment 4.

These two processes produce a highly adaptive word learning system. First, when the

system is learning word-object mappings from distributional information that really is

produced by one-to-one mappings and occasional noise, the two processes will support

each other. Local competition will sort out mappings within a trial, and global competi-

tion will increase the rate at which consistently occurring mappings are formed. However,

despite the production of a one-to-one bias at each of the individual stages of competi-

tion, the unified system can support the acquisition of two-to-one mappings. This is

because the processes are complementary. As seen in Experiment 4, local competition

can compensate for the action of global competition and thus keep the system from

failing to learn correct new mappings. Let us now consider several implications of this

process-model framework.

5.2. The importance of local context for statistical learning

What is striking about the experimental results is the strength of local competition rel-

ative to global competition. In the last two experiments, participants had received all six

exposures to each double word’s early referent before ever encountering its late referent.

This should have led to particularly strong global competition. Participants’ trial-by-trial

confidence judgments corroborate this, with early referent judgments being higher than

late referent judgments from their earliest occurrences. Nonetheless, participants learned

the late referents and did not lose the earlier ones. This highlights the importance of local
competition in cross-situational word learning, and by extension the importance of under-

standing what happens in individual learning moments. Evidence from other recent stud-

ies of word learning further underscores this point. Onnis, Waterfall, and Edelman (2008)

have argued for the importance of local structure in naming events to children in the form

of variation sets. Mothers will often highlight the meaning of a single word by using it

rapidly in several different sentence constructions, increasing salience through competi-

tion. These authors and their colleagues have further argued that this is a general princi-

ple that enables learning of structured representations (Goldstein et al., 2010). In a

related vein, Perry, Samuelson, Malloy, and Schiffer (2010) have shown that success in

word and category learning depends on the local structure of the categories to be learned.

When local exemplars vary maximally on dimensions by which they are not organized,

global learning is accelerated (see also Rost & McMurray, 2009).

Taken together with our competitive framework, these ideas shed light on recent con-

flicting results in the cross-situational learning paradigm. Several different examinations

of many-to-one mapping have yielded mixed results. In some experiments (Ichinco,

Frank, & Saxe, 2009), as in our Experiments 1 and 2, participants do not learn multiple

mappings well. In other experiments (Kachergis, Yu, & Shiffrin, 2012; Vouloumanos,

2008), as in our Experiment 3, participants succeed in learning multiple mappings. The

experiments in this article suggest that these differences in outcomes may lie in the types

of competitive processes encouraged by these tasks. For instance, Vouloumanos (2008)
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exposed learners to stimuli consisting of one word and one object at a time, with probabi-

listic co-occurrence relationships expressed only across multiple trials. Thus, there was no

opportunity for within-trial local competition. In contrast, the present experiments, as well

as those described in other explorations of mutual exclusivity in statistical word learning

(Ichinco et al., 2009; Kachergis et al., 2012), presented multiple words and objects per

trial. The differences in resulting learning rates can be explained by the within-trial and

cross-trial structures, and the types of competition they encourage.

5.3. Representation and process in statistical learning

In the framework presented in this article, the results are interpreted on the assumption

that learners are tracking a simple statistic (e.g., co-occurrence), and the difference in

learning results is explained by competitive processes which moderate the stored informa-

tion. This simple representation is a reasonable starting point, but learners could alterna-

tively represent a different statistical property of their input. For instance, learners could

represent a more complex statistic, such as the conditional probabilities between words

and objects. Human learners are known to be sensitive to differences in conditional proba-

bility in visual (Fiser & Aslin, 2001) and auditory (Aslin, Saffran, & Newport, 1998)

statistical learning tasks. However, we believe that such an account based on a complex

representation alone would be insufficient on two grounds. First, while tracking conditional

probability rather than co-occurrence frequency may be sufficient to explain the results of

Experiment 2, it cannot explain the other experiments. Participants showed similar inhibi-

tion in Experiment 1 in which conditional probability between double words and each of

their correct referents was one. It also cannot parsimoniously explain the order effect

found in Experiments 3 and 4. Further, one can argue that tracking conditional probability

implicitly implements competition at the global level. The conditional probability between

a word and any given referent is reduced each time that word occurs on that trial without

that referent but with other referents. Thus, any complex representation needs to address

issues of local and global competition to explain the empirical results.

More important, even if a more complex statistic could account for the test results, we

believe that it would ultimately be incomplete. The experiments in this article present

compelling evidence that cross-situational learning involves important order effects, and

that computations about which mapping information to store are made on a trial-to-trial

basis. An explanation for the data relying on complex statistical construct would be a

move away from a process-level model, and thus have little to say about the trial-by-trial

computations. More generally, while questions of process and representation may be trea-

ted as orthogonal by normative models (e.g., Frank et al., 2009), they must be intimately

connected in process-level models.

5.4. Mutual exclusivity

In the phenomenon of disambiguation through mutual exclusivity, children (Markman

& Wachtel, 1988; Merriman & Bowman, 1989) or adults (Golinkoff, Hirsh-Pasek, Bailey,
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& Wenger, 1992; Halberda, 2006) are first exposed to a consistent mapping between a

word and an object. Then, they are shown the same object and a novel object, and asked

to find the target of a novel label. Adults and children over 18 months of age overwhelm-

ingly select the novel object as the referent for the novel label. Because such disambigua-

tion is thought to be important to acceleration of word learning, it is considered critical

for computational models of word learning (Fazly et al., 2010; Frank et al., 2009; Regier,

2005; Xu & Tenenbaum, 2007; Yu, 2008). Its importance has also inspired a number of

competing theoretical accounts: Mutual Exclusivity (Markman, 1990), the principle of

Contrast (Clark, 1987), a Pragmatic account (Diesendruck & Markson, 2001), the Novel-

Name Nameless-Category principle (Golinkoff et al., 1992), Disjunctive Syllogism

(Halberda, 2006), and the size principle (Xu & Tenenbaum, 2007).

While these accounts make different predictions in some cases, we would like to call

attention to the point that these accounts posit competition at different levels. Markman’s

(1990) mutual exclusivity is fundamentally a competitive process at the global level:

Once a word-object mapping has been established, learners should resist assigning a sec-

ond label to the same object. It also suggests commitments to trial-by-trial competition.

On the other hand, the principle of Contrast and the size principle are competitive pro-

cesses at the global level but do not make a commitment to trial-by-trial competition.

Contrast suggests that learners a priori disprefer lexicons in which two labels share the

same referential extent, and the size principle suggests that learners a priori prefer lexi-

cons of smaller size. Finally, the pragmatic account and disjunctive syllogism are both

processes that operate at the local level. On the pragmatic account, a learner expects that

the novel label is being produced under Sperber and Wilson’s (1986) relevance principle:

If the intent of the utterance was to label the familiar object, the speaker would have used

the familiar label. Disjunctive syllogism is also about reasoning at the moment of word

learning and describes a particular process of elimination used to determine that the novel

word should map to the novel label. In contrast to these accounts, the Novel-Name

Nameless-Category principle posits that pure novelty, rather than competition with previ-

ous mappings, drives the effect.

In the framework presented in this article, we suggest that many of these accounts

may not be direct rivals. Rather, they address competition at different levels. Disambig-

uation through mutual exclusivity may involve multiple levels. Understanding how

mutual exclusivity operates at a process level (e.g., Halberda, 2006) will require under-

standing how these different explanations are implemented and how they interact. One

potentially fruitful route for further research may consist in examining patterns of recov-

ery from incorrect use of mutual exclusivity. As evidence suggests that mutual exclusiv-

ity is not a hard constraint (Merriman & Bowman, 1989; Regier, 2003), the patterns

that adults and children show in learning words that do not accord with one-to-one map-

ping may be useful in determining at which level competition in mutual exclusivity

operates.
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6. Conclusion

Cross-situational word learning involves the acquisition of word-object by tracking

co-occurrence patterns across multiple instances. In this article, we examined the contri-

bution of competition—both at the global and local levels—to successful learning. While

many models include at least one such process in their explanations (Fazly et al., 2010;

Frank et al., 2009; Siskind, 1996; Yu, 2008), prior empirical work on non-one-to-one

mappings has been done explicitly in the context of unambiguous learning instances (see,

e.g., Liittschwager & Markman, 1994). This article presents a systematic empirical analy-

sis of such learning as it plays out, trial-by-trial, in learning words from a set of ambigu-

ous labeling instances. These experiments show that learners bring competitive

mechanisms to the table, and do so at multiple levels. These competitive processes reduce

the ambiguity involved in tracking word-object mappings, thereby reducing load for

learners with cognitive constraints (Kareev, 1995). These kinds of experiments are critical

in the context of recent interest in cross-situational approaches to language acquisition.

This new approach shifts the focus of questions about language learning from how chil-

dren disambiguate reference in single learning events to how disambiguation occurs

through integration of information over time (Siskind, 1996; Yu & Smith, 2007). It is

critical, however, not to lose sight of the earlier insights about in-the-moment processes.

The experiments in this article represent a step in this direction, an attempt to connect

the statistical learning approach back to the mechanisms that implement its dynamics and

underpin the information acquired from each ambiguous naming event.

Although the experiments in this article demonstrate competitive mechanisms by inhi-

bition of learning, precisely these same mechanisms are involved in successful cross-situ-

ational learning. They allow learners to filter much of the noise out of the statistics in

their input, narrowing in on correct word-object mappings at a faster rate. Identifying

these processes, and understanding their interaction, will be critical to constructing satis-

fying process-level models of cross-situational learning (Smith et al., 2011; Yu & Smith,

2011).

Of course, learning words is not just a matter of mapping words to their unique refer-

ents. Rather, the majority of labels refer to whole categories of referents. To better mea-

sure and understand competitive processes, these studies sidestep this problem. But real

word learners cannot. There is no reason to think that competition must play out only an

object-by-object basis. Instead, it is likely that it occurs also at the level of features of

both objects and words (Regier, 2005). Understanding competition at multiple scales, and

how these mechanisms can interact, can inform statistical learning theories for other lin-

guistic information. How do local and global competition play out in learning phonemes,

segmenting speech, or learning grammatical categories? Answering these questions will

be fundamental to developing process-level models of statistical language learning.
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Appendix

Because tests for different types of words (single and double) had different chance lev-

els of performance due to guessing, comparing absolute accuracy could be misleading.

To correct for this, we developed an analysis that breaks test accuracy down into two

independent portions: the number of successes due to known word-object mappings (K),
and the number of successes due to chance. The number of known word-object mappings

can then be compared directly across word types.

Responses due to knowledge are modeled as a deterministic process: if a participant

knows the correct answer, he or she always gives it. Guesses are modeled as a draw from

a binomial distribution with parameter p set by the number of alternatives from which

the participant selects. Each participant produces some number of correct responses n.
For any number of correct responses due to knowledge (k ∈ 0…n), the remaining correct

responses (n�k) must be due to guessing. The number of observed correct responses has

some likelihood under each of the different settings of k. Our analysis finds the setting

K=k under which the data have the highest likelihood.

For single words, accuracy is determined from a single choice among four alternatives.

Thus, the binomial distribution for guessing for single words has p ¼ 1
4
. For a participant

who produces n correct responses out of 6, the maximum likelihood estimate of known

mappings Ks is:

Ks ¼ argmax
ks

PðN ¼ njKs ¼ ksÞ

¼ argmax
ks

binomialðn� ks; 6� ks;
1

4
Þ

ðA1Þ

For double words, a participant makes two consecutive responses. Zero, one, or both of

these responses may be correct. A participant may also know zero, one (Kd1), or both (Kd2)

of the correct mappings for each word. As two of the four alternatives are correct responses,

p ¼ 1
2
for the first response. If the first response is correct, 1 of the remaining 3 choices is
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correct. Thus, given a correct answer on the first choice, p ¼ 1
3
for the second. For a partici-

pant who selects the correct first response for n of the six words, and both correct responses

for m of the six words, the maximum likelihood estimate for Kd1 and Kd2 is:

Kd1;Kd2 ¼ argmax
kd1;kd2

PðN ¼ n;M ¼ mjKd1 ¼ kd1;Kd2 ¼ kd2Þ

¼ argmax
kd1;kd2

PðN ¼ njKd1 ¼ kd1;Kd2 ¼ kd2Þ

�PðM ¼ mjKd1 ¼ kd1;Kd2 ¼ kd2;N ¼ nÞ

¼ argmax
kd1;kd2

binomial n� kd1 � kd2;6� kd1 � kd2;
1

2

� �

� binomial m� kd2;n� kd2;
1

3

� �

ðA2Þ
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