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A B S T R A C T

Numerous studies from developmental psychology have suggested that human symbolic representation of
numbers is built upon the evolutionally old capacity for representing quantities that is shared with other species.
Substantial research from mathematics education also supports the idea that mathematical concepts are best
learned through their corresponding physical representations. We argue for an independent pathway to learning
“big” multi-digit symbolic numbers that focuses on the symbol system itself. Across five experiments using both
between- and within-subject designs, we asked preschoolers to identify written multi-digit numbers with their
spoken names in a two-alternative-choice-test or to indicate the larger quantity between two written numbers.
Results showed that preschoolers could reliably map spoken number names to written forms and compare the
magnitudes of two written multi-digit numbers. Importantly, these abilities were not related to their non-
symbolic representation of quantities. These findings have important implications for numerical cognition,
symbolic development, teaching, and education.

1. Introduction

Human knowledge about numbers has been characterized as a
triple-code system (Dehaene, 1992; Dehaene & Cohen, 1995): discrete
quantities can be represented by sets of the physical quantities them-
selves, by number names, or by written symbols. There are many rea-
sons to believe that the perception of physical quantities is the starting
point historically and developmentally. Consistent with this idea, many
studies using various methods have shown strong predictive relations
between the perceptual discrimination of quantities and mathematics
achievement (e.g., Barth et al., 2006; Dehaene, 2011; Gallistel &
Gelman, 1992; Gilmore, McCarthy, & Spelke, 2010; Libertus, Feigenson,
& Halberda, 2013; Piazza et al., 2010). These include correlational
studies linking children’s perceptual discriminations with current and
later mathematics performance (Bonny & Lourenco, 2013; Chen & Li,
2014; Feigenson, Libertus, & Halberda, 2013; Gilmore et al., 2010;
Halberda, Mazzocco, & Feigenson, 2008; Inglis, Attridge, Batchelor, &
Gilmore, 2011), analyses of the perceptual discrimination skills of
children with mathematics disabilities (Mazzocco, Feigenson, &
Halberda, 2011; Piazza et al., 2010), as well as demonstrations that

perceptual training benefits performance in mathematics tasks (Hyde,
Khanum, & Spelke, 2014; Park & Brannon, 2013; Räsänen, Salminen,
Wilson, Aunio, & Dehaene, 2009; Wilson, Dehaene, Dubois, & Fayol,
2009). Given these facts, it seems plausible that the path to under-
standing the other two parts of the triple-code system—number names
and written symbols—is through the perception of physical quantities
(Barth, Starr, & Sullivan, 2009; Park & Brannon, 2013; Piazza, Izard,
Pinel, Le Bihan, & Dehaene, 2004). Indeed, in his influential book,
Dehaene (1992) suggested that number names were directly converted
to meaning through perceptual representations of quantity.

Here, we ask: Could learning about the symbol system, specifically
with respect to big numbers, offer a second independent entrance to
mathematics? Mathematics at its core is not about specific quantities
but rather is about the systems of relations among quantities as vari-
ables (Russell, 1903). The notational and naming system we use to
represent specific quantities are founded on a system of relations, re-
presenting and naming quantities as counts within a multiplicative
hierarchy of sets of 10 (Copi, Menninger, & Broneer, 1971). Thus, the
symbol “342” is named “three-hundred and forty-two” and counts three
sets of one hundred, four sets of ten, and two sets of one, with 10 sets of
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one equal to 1 set of ten, and 10 sets of ten equal to 100 sets of one.
Likewise, the symbol “546” is named “five-hundred and forty-six” and
counts 5 sets of one hundred, 4 sets of ten and 6 sets of one. Although
342 and 546 refer to different specific quantities, the written forms and
spoken names reflect the same relational structure. Computational
models have shown that learners could, in principle, capitalize on these
regularities within and across spoken and written names to learn the
underlying relational structure—enabling such a learner to understand
never-before-seen multi-digit numbers—without any grounding of the
represented number to a specific perceived quantity (Grossberg &
Repin, 2003; Rule, Dechter, & Tenenbaum, 2015). These kinds of
models derive the underlying structure that maps spoken numbers to
written numbers and thus demonstrate that learning about the surface
properties of the notational system and their names could be a path into
understanding place value notation and as an introduction to mathe-
matics as a relational system.

However, the consensus view from research on children’s learning
of the place value concepts provides little support for this idea. The
difficulty of place value concepts for children—evident late into ele-
mentary school—is well-documented (Ross, 1986; Fuson & Briars,
1990; Fuson, 1990; Gervasoni et al., 2011; Ross and Sunflower, 1995).
The irregularities in number names that characterize many languages
(e.g., “eleven”, “fifteen” in English) are known to cause children con-
siderable difficulty and have led some researchers to conclude that
children cannot discover place value principles from the surface
structure of names and written numbers alone (Fuson & Kwon, 1992;
Miura & Okamoto, 1989; Saxton & Towse, 1998). Further, many the-
orists have argued that curricula designed to ground place value no-
tation in discrete counts and physical models benefit learning about
place value, although there is mixed evidence in support of this con-
clusion (Mix, 2010; Mix, Smith, & Crespo, 2019; Mix, Smith, Stockton,
Cheng, & Barterian, 2017). Recently, researchers have further sug-
gested that large number meanings might be grounded in approximate

perceptual representations of ungrouped quantities (Barth et al., 2009;
Piazza et al., 2004), although recent evidence suggests that these links
may not be easily formed by children (Sullivan & Barner, 2011). All this
would seem to suggest that understanding the place value system is
difficult, not easily linked to perceived quantities, and thus likely to
require explicit instruction.

These conclusions may be missing an important role for early in-
formal learning about multi-digit numbers and their names, the kind of
early learning that we hypothesize does not involve linking large
number names or their written forms to perceived quantities. This hy-
pothesis is suggested by several findings showing that preschool chil-
dren know more about multi-digit numbers than one would expect
given the difficulties of school-age children (Byrge, Smith, & Mix, 2014;
Mix, Prather, Smith, & Stockton, 2014). One study (Mix et al., 2014)
presented 4- and 5-year-old children with 2-, 3- and 4-place multi-digit
numbers in a 2-alternative-forced-choice task and asked them to in-
dicate the one that matched a spoken number name (“Which is N?”) or
was of greater magnitude (“Which is more?”). The children performed
well above chance. These preschool children’s performances certainly
do not implicate an explicit understanding of base-10 notation in the
sense of knowing that the 6 in 642 is 6 sets of 100, that the 4 is 4 sets of
10, and that the 2 is 2 sets of one—the goal of formal training about
place value in school-age children. However, the likelihood that these
children had encountered the name and written form of any individual
3- or 4-digit numbers used in the study (e.g., 836) is vanishingly small
given the sparsity of individual number names in talk to preschool
children (Dehaene, 1992; Dehaene & Mehler, 1992; Levine,
Suriyakham, Rowe, Huttenlocher, & Gunderson, 2010). Yet these chil-
dren showed implicit knowledge about how (likely unfamiliar) number
names and written forms work. Evidently, preschool children, without
formal instruction, are deriving generalizable knowledge about the two
symbolic codes in the triple-code system.

The five experiments that follow were designed to further document

Fig. 1. (A) A visual illustration of the triple-code
theory of number representation. Numbers can be
represented with three formats—names, digits or
quantity. These formats can be directly converted
to each other. B) Overview of the five experiments.
Experiment 1 used a between-subject design and
Experiment 2 used a within-subject design to
compare children’s ability to (1) map names for
large (2 and 3 digits) numbers to written digits and
(2) to map names to dot arrays. The formats being
tested are the conversion from names to digits and
the conversion from names to quantities respec-
tively. Experiment 3 and 4 used between- and
within-subject designs to examine children’s ability
to compare (1) the relative magnitudes of large
quantities given written multi-digit numbers or (2)
the relative magnitudes of large quantities given
dot arrays of those same quantities. The formats
being tested are digits and quantities. Experiment 5
provides evidence on the link between children’s
ability to (1) map number names to written digits
and (2) their ability to make magnitude judgments
given written representations of quantities. The
formats being tested are the conversion from names
to digits and digits alone.
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this emerging knowledge and to test the hypothesis that this early un-
derstanding of the symbolic code is not dependent on children’s ability
to map specific multi-digit number names to the physical quantities
they represent. As illustrated in Fig. 1, our approach was to probe the
connections between the three codes in Dehaene (1992) triple-code
system. In Experiments 1 and 2, we directly assessed two key links in
the triple-code system: number names to written digits and number
names to physical quantities. Experiment 1 used a between-subject
cross-sectional design with the explicit purpose of collecting data from a
large and diverse sample of preschool children. Prior studies (Byrge
et al., 2014; Mix et al., 2014) suggesting early knowledge about the
place value system were based on small samples potentially drawn from
selective populations thus limiting general conclusions about this early
knowledge about multi-digit number names and written forms. Ex-
periment 2 used a smaller sample within-subject design to assess the
relation between these two links—names to digits and names to
quantities. Experiments 3 and 4 (in a large-N between-subjects study
and in a smaller N within-subject study, respectively) examined chil-
dren’s abilities to make relative magnitude judgements about multi-
digit numbers and the physical quantities represented by those num-
bers. Considerable past research shows that children are quite skilled in
making relative magnitude judgements about physical quantities
(Halberda & Feigenson, 2008; Libertus, Feigenson, & Halberda, 2011;
Odic, Libertus, Feigenson, & Halberda, 2012): Are the developmental
trajectories for quantities and symbols similar? Are individual chil-
dren’s abilities to compare specific written digits predicted by their
comparisons of the same physical quantities? The answers should be
“yes” if the perception of physical quantities provides the meaning for
big numbers and their written representations.

Experiment 5 focused on children’s understanding of the two sym-
bolic code—names and written forms—and whether children’s ability
to make relative magnitude judgments about written digits is predicted
by their ability to link number names to those written forms. Finally, in
a sixth section of the Results, we aggregated the data involving digits
and perceived quantities across the five experiments, providing a finer
characterization of growth in knowledge about written symbols and the
physical quantities in children from 3 to 6 years of age.

Altogether the results provide three kinds of evidence pertinent to
the hypothesis that young children are building a beginning under-
standing of the notational system that is not dependent on their ability
to make judgements about the physical quantities being represented:
the results (1) provide an assessment of early knowledge about the
names and written forms of multi-digit numbers in a broad sample of
children; (2) directly compare the patterns of growth in children’s
judgments of number names, written digits, and physical quantities;
and (3) examine the within-subject relation between judgments of the
multi-digit numbers and the physical quantities they represent.

2. Experiment 1

Experiment 1 compared children’s ability to map heard number
names to written forms or to dot arrays. For this study, we purposefully
focused on test items that should be difficult in the case of mapping
names to digits, but easy in the case of mapping names to physical
quantities. Research on developing place value knowledge suggests that
written forms with zeros are challenging for young learners (Byrge
et al., 2014; Zuber, Pixner, Moeller, & Nuerk, 2009). When a novice
learner is presented with the name “twenty one” and asked to choose
between the written forms “21” and “201,” both choices include a 2 and
a 1, and if children do not recognize the role of places, “201” could be
construed as having a “20” and “1.” However, the physical quantities
represented by 21 and 201 differ by over 9-fold. If children understand
number names in terms of (approximate) representations of the phy-
sical quantity, then mapping “twenty one” to a set of 21 things rather
than to a set of 201 things should be relatively easy. Because young
children are more likely to have stronger and more precise

representations of small set sizes than larger ones (Feigenson, Dehaene,
& Spelke, 2004; Prather, 2012) and also consistent with the use of this
task in assessments of school-age children’s understanding of multi-
digit numbers (Mix et al., 2014), the presented name in both the Dots
and Digits conditions always asked for the smaller quantity (e.g.,
“twenty-one” in a comparison of “21” vs “201”).

2.1. Method

Participants. The participants were 176 children from 3 to 6 years
of age, with half male and half female in each of 4 broad age groups: 44
3-year-olds (mean=43.4 mo, range= 38 to 47 mo); 43 4-year-olds
(mean= 54.2, range=48 to 59 mo); 45 5-year-olds (mean=65.3 mo,
range 60 to 71 mo), and 44 6-year-olds (mean=79.4 mo, range=72
to 84 mo). The sample of children was broadly representative of the
local population: 84% European American, 5% African American, 5%
Asian American, 2% Latino, 4% Other) and consisted of predominantly
working- and middle-class families. Children were recruited through
community organizations (e.g., museums, child outreach events, boys’
and girls’ clubs) and at 12 different preschools and daycares selected to
serve a diverse income population. Eighteen percent of the children
attended daycares or lived in neighborhoods serving schools with over
a 50% participation in the free-lunch program. Most of the 5- and 6-
year-olds were in some form of half-day kindergarten (at a public
school or in daycare); kindergarten is not required by the local state and
the curriculum varies considerably across different schools. Counting to
100 and exposure to the corresponding written digits were part of some
children’s kindergarten experiences. Children were assigned to either
the Digits Condition or the Dots Conditions; equal numbers of children
from each participating school or school district were assigned to the
two conditions.

Stimuli. To accommodate the goal of testing a broad sample of
young children in a variety of contexts, each child was tested on only 10
two-alternative-forced-choice trials: 3 v 7, 11 v 24, 15 v 105, 21 v 201,
36 v 306, 42 v 402, 64 v 604, 78 v 807, 206 v 260 and 305 v 350. Six of
the trials compared two and three-digit numbers that differed by the
presence of a zero. In addition to these 6 items, we included one single
digit comparison, one two-digit comparison, and two 3-digit compar-
isons in which the choices were transpositions and included a zero.
These last two items were expected to be difficult in both the Digits and
Dots conditions.

For the Dots condition, the comparison sets were arrays of happy-
face dots as shown in Fig. 2. The to-be-compared arrays for each trial
were presented on an 11-inch by 8-inch card with each array centered
in its half of the card. The dots were randomly placed within an irre-
gular region of the same area such that the density (or inter-dot dis-
tance) co-varied with set size while the overall area was comparable.
Dot arrays that vary in quantity always co-vary with other properties
(e.g., cumulative area, overall area, density, see Cantrell & Smith,
2013). Studies directed to measuring children’s precision of dis-
criminating dot arrays often use many trials and kinds of arrays to at-
tempt to control for children’s possible dependence on these other co-
varying dimensions (Leibovich & Henik, 2013; Odic et al., 2012). In the
present study, the arrays roughly equate the area of the to-be-compared
arrays but do not control for other possible dimensions. We chose this
approach on two grounds: First, dot arrays that differ in the number of
dots, like perceived quantities in the world, co-vary across a number of
dimensions and it has been argued that these arrays provide the clearest
signal to the physical quantities of the arrays (Cantrell, Boyer, Cordes, &
Smith, 2015; Cantrell & Smith, 2013). Second, the question under test is
not that the precision of discrete quantity comparison predicts learning
about visual symbols, but that children’s learning about number names
and multi-digit numbers is or is not dependent on their ability to make
the same judgements with respect to physical quantities. Accordingly,
two unique sets of arrays were constructed for each trial that differed in
the random arrangement of the dots and the side of the correct choice.
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Half the children in each age group in the Dots condition were pre-
sented one of these two sets of arrays.

For the Digits condition, the digits were printed in 100 pt font
(Times New Roman) and presented on 8.5-inch×3-inch cards with
each number centered in its half of the card as shown in Fig. 2. Two
versions of these cards were also constructed with the left-right position

of the to-be-compared numbers counterbalanced across the two sets
and with half the children in each age group in the Digits condition
receiving one of these sets.

In both conditions, for all card sets, half of the correct choices were
on the left and half were on the right and the order of test trials was
randomly determined for each subject. All cards were laminated in
plastic.

Procedure. The children were tested in a quiet room. There were
two warm-up trials using cards that showed two objects (i.e., dog, cup)
located on separate sides of the cards. The experimenter asked the child
to indicate the named object, saying “Look at these. Look at this one.
Now, look at this one. Look at them both before you make your choice.
Which one is ____?“ Children were asked to indicate by pointing to the
labeled side. All children correctly did so on the two warm-up trials. For
the immediately following 10 test trials, the experimenter said: ”now I
am going to say a number and I want you to tell me which picture
shows that number.“ She presented the two choices and said ”Look at
this one. Now, look at this one. Look at them both before you make your
choice. Which one is _____?” The experimenter offered no feedback of
any kind as she proceeded through the 10 trials. Pilot studies indicated
a bias among very young children to always choose the larger dot array.
Accordingly, to be conservative in measuring children’s ability to map
number names to dots, children were asked—in both the Digits and the
Dots conditions—for the smaller of the two numbers or amounts.

Analysis Plan. The goal of the between-subject experiments (1 and
3) is to compare developmental differences and group differences in the
Digits and Dots conditions. To this end we use three converging ap-
proaches in the analysis: (1) To measure the incremental growth of
judgements of the two kinds, we used regression analyses relating in-
dividual children’s performance in each task to continuous age; (2) to
directly compare performance in the two conditions as function of age,
we grouped the children into 4 age groups and used a 4 (Age group) by
2 (Condition) analysis of variance comparing overall performance; and

Fig. 2. Top: sample stimuli from the Dots condition, depicting the 201 (left) and
21 (right) smiley faces. Bottom: sample stimuli from the Digits condition.

Fig. 3. Results from Experiment 1: (a) The number of trials with the correct answer for the Digits and Dots tasks as a function of age. (b) The average number of
correct trials for the Digits and Dots task in each age group. The dotted line indicates chance performance. (c) The proportion of children who answered correctly for
each of the test items in the Digits and Dots tasks.
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(3) to examine item-level effects, we used a Chi-square analyses of the
number of children (collapsed across age group) answering each item
type correctly in the two conditions. Because gender differences in
mathematics abilities are typically not observed in preschool children
(Geary, 1994; Jordan, Kaplan, Ramineni, & Locuniak, 2009; Lachance &
Mazzocco, 2006; Lummis & Stevenson, 1990) but have been reported in
a few studies (Byrge et al., 2014; Ginsburg & Russell, 1981; Robinson,
Abbott, Berninger, & Busse, 1996), in all experiments we applied a
highly sensitive measure of possible gender differences, comparing the
male versus female performance for all children within each condition
by a simple t-test. Across the 5 experiments, we observed no gender
differences, ps > 0.50 for all comparisons. We do not consider this
factor further.

2.2. Results and discussion

Fig. 3a shows each child’s number of correct trials as a function of
continuous age in the two conditions. Performance increased con-
sistently with age in the Dots condition, R2= 0.08, F (1, 86)= 9.01,
p= .003, and in the Digits condition, R2= 0.43, F (1, 86)= 66,
p < .0001. As is also clear, many children, including some quite young
children, performed very well in the Digits version of the task whereas
many children, including many older children, performed below chance
in the Dots task. As is also apparent, age-related growth was steeper in
the Digits than Dots task (B= 0.66 and 0.31 respectively). Fig. 3b
shows the mean performances in the Dots and Digits conditions as a
function of the four age groups. A 4 (Age group) by 2 (Stimulus con-
dition) analysis of variance yielded only reliable main effects of Sti-
mulus condition, F (1, 168)= 46.4, p < .0001, partial η2= 0.22, and
Age group, F (3, 168)= 19.58, p < .0001, partial η2= 0.26. The in-
teraction between Stimulus condition and Age group approached con-
ventional significance, F (3, 168)= 2.67, p= .049, partial η2= 0.04.
As shown in Fig. 3b, as a group, 5- and 6-year old children performed
very well in mapping number names to Digits, and did so at levels
greater than chance, t5yearolds (21)= 6, p < .0001; t6yearolds (21)= 13,
p < .0001, two-tailed. In contrast, in the Dots task, only the 6-year-
olds performed above chance (t (21)= 3.2, p= .005), all other age
groups performed at chance level or reliably below chance, t3yearolds
(21)=−0.54, p= .6; t4yearolds (20)=−4.5, p= .0002 and
t5yearolds(22)=−0.95, p= .4, two-tailed, reflecting a bias on some
children’s part to simply choose the array of dots with the larger set
size. Fig. 3c shows the proportion of children getting each test item
correct in the Dots and Digits condition. The advantage of children’s
performance in mapping number names to digits over that of mapping
those same number names to dot arrays holds for all multi-digit num-
bers tested: with the exception of the single digit comparison (3 versus
7), reliably more children responded correctly on all individual items in
the Digits condition than the Dots condition, Chi-squares (1) > 3.8,
ps < 0.05.

Altogether the results indicate the following: Many preschool chil-
dren performed quite well in matching number names to written digits
for 2- and 3-digit numbers. The ability of mapping number names to
digits grew incrementally with age during this period. For all multi-
digit numbers, performance was much better at all ages for Digits than
for Dots. Overall, children’s ability to map number names to dot arrays
lagged far behind their ability to map number names to the written
versions of those names. This was so despite the choice of comparisons
expected to be hard when represented as digits but relatively easy given
the actual quantities.

From the perspective of symbol learning, the advantage of Digits
over Dots makes sense as both spoken and written number symbols are
organized by the same base-10 principles and have the same underlying
relational structure. Although children may never have been asked to
map a heard number name such as “three hundred and five” to either
the written form of this number or to a dot array, both number names
and written digits have corresponding relational structures. Clouds of

dots, in contrast, do not have any structure that aligns with that of the
symbols through which we represent those quantities. From the per-
spective of the triple-code system in which perceived quantities provide
the representational foundation for the other codes, the results are
unexpected. Indeed, when children below the age of six were asked to
map heard names to dots arrays, they performed at or below chance,
unable to even map a 2-digit number to the quantity it represents when
the foil contained 9 times as many dots. Preschool children apparently
do not have even a rough sense of the physical quantities represented
by these number names (see also, Sullivan & Barner, 2011). Four-year-
old children consistently performed reliably below chance, choosing the
larger quantity: When asked to choose “thirty six,” for example, they
chose the array with 306 dots rather than the one with 36. We con-
jecture that what 4-year-olds knew was that “thirty six” named a big
amount—but had no representation of the magnitude of that quanti-
ty—and so they chose the array with more dots.

3. Experiment 2

Although children’s ability to map number names to the written
forms was consistently better at all ages than their ability to map
number names to quantities, it still could be the case that the two de-
veloping abilities are related. Accordingly, Experiment 2 replicated
Experiment 1 using a within-subject design to determine whether the
age-related advances in the Digits task and the Dots task are correlated.

3.1. Method

Participants. Fifty-four children (26 male) were recruited from the
same population as in Experiment 1, but none of the children partici-
pated in both experiments. There were 15 3-year-olds (mean age
41.3 months, range 36–48months), 13 4-year-olds (mean age
51.6 months, range 48–57months), 13 5-year-olds (mean age
64.02months, range 60–71months), and 13 6-year-olds, (mean age
75.6 months, range 72–81months).

Stimuli and Procedure. All aspects of the stimuli and procedure
were identical to Experiment 1 except that each child was tested twice,
on separate days (separated by at least one day but no more than
10 days) in the Digits and Dots conditions. Across the entire sample,
half the children were tested in the Digits task first and half in the Dots
task first and within each age group, at least 6 children at each age level
were tested with Digits first or with Dots first. The order of test trials
was randomly determined for each child.

3.2. Results and discussion

Fig. 4 shows the overall pattern of performance for the four age
groups and for the individual items. Regression analyses showed that
performance in the Digits condition was strongly related to continuous
age, R2= 0.26, F (1,52)= 18.5, p < .001, the same result found in
Experiment 1. However, in this smaller sample study, performance in
the Dots condition was not reliably related to age, R2= 0.02, F(1,
52)= 1.02, p= .32, whereas a weak relation was observed in Experi-
ment 1. This weak correlation is likely due to the nonlinear relation
between age and children’s ability to map number names to dot arrays
as evidence in Fig. 4b (and in Experiment 1 Fig. 3b); although 3-, 4- and
5-year-olds all performed at chance (ts > −1.4, ps > 0.1), the 3-year-
olds on average had a higher number of correct trials (M=5.44) than
the 4-year-olds (M=4.42) and the 5-year-olds (M=4). Only the 6-
year-olds perform above change (t (12)= 3.3, p= .006). A 4 (Age
group) by 2 (Order of tasks) by 2 (Stimulus condition) analysis of
variance for a mixed design yielded a main effect of Age group, F (3,
46)= 6.92, p= .004, partial η2= 0.21 and a main effect of Stimulus
condition, F (1, 46)= 33.92, p < .001, partial η2= 0.23. The inter-
action between Age group and Condition approached conventional
significance levels as the performance in the Digits task increased with
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age group more than did the performance in the Dots task, F (3,
46)= 2.85, p= .048, partial η2= 0.06. For the Digits task, all age
groups performed above chance level, ts > 2.7, ps < 0.02. In contrast,
for the Dots task, as described above, only the 6-year-olds performed
above chance level.

The new question for this smaller sample within-subject replication
of Experiment 1 was the relation between performance in the two tasks.
Although knowledge of the mapping of number names to multi-digit
numbers grows more steadily and rapidly during this developmental
time frame than does knowledge of how these same number names map
to dot arrays, it may still be the case that children who are better in one
task are better in the other. As shown in Fig. 4d, this appears to be
weakly the case, r (52)= 0.27, p= .05. However, if continuous age
was entered first in a stepwise regression predicting performance in the
Digits condition (F (1, 52)= 18.467, p < .001), performance in the
Dots condition was excluded from the final model (t= 1.749,
p > .05).

In sum, the overall pattern of children’s performances in mapping
spoken number names to multi-digit numbers and to dots arrays in-
dicates: (1) During the preschool years, children’s understanding of
how spoken number names map to written multi-digit numbers in-
creases systematically. (2) During this same period, children perform
much more poorly and show much less systematic growth in their
ability to map the same number names to dot arrays. (3) Children’s
performances in these two mapping tasks are not related beyond what
can be explained by age alone. Overall, the results of Experiments 1 and
2 indicate that preschool children are building knowledge about how
the two symbolic codes—names and written multi-digit numbers—map
to each other but show less and later knowledge about how one sym-
bolic code, multi-digit number names, map to perceived quantities. In
brief, knowledge about how the two symbolic codes map to each other
appears earlier and independent of children’s ability to map these same
number names to physical quantities.

4. Experiment 3

Preschoolers’ ability to map number names to written forms in
Experiments 1 and 2 implies at least an implicit knowledge about the
relational principles behind the written notational system and names
for multi-digit numbers, but does not necessarily signal any under-
standing of the meanings of those symbols. Children might only know
how the two codes relate; and knowing what these symbols mean could
depend on linking those symbolic codes to the specific quantities that
they represent. This is a critical issue with respect to triple-code system
(Dehaene, 1992; Dehaene & Cohen, 1995) as the perceived quantities
are proposed to provide the semantic basis for the two symbolic codes
of numbers. In Experiment 3, children were asked to make relative
magnitude judgments, given digits or dots, in a between-subjects de-
sign. Given the large literature on children’s competence in making
relative magnitude judgments for perceived quantities (Halberda &
Feigenson, 2008; Libertus et al., 2011), we expected children to per-
form well in the Dots condition. Can they also make these relative
magnitude judgments in the Digits condition?

4.1. Method

Participants. The participants were 129 (64 male) children re-
cruited from the same population as in Experiment 1. Some children
(36) had participated in Experiment 1 at least 9 months prior to
Experiment 3. Separate analyses of these children’s performances in-
dicated no differences in the pattern of results. There were 32 3-year-
olds (mean= 41.6 mo, range 36 to 47 mo), 36 4-year-olds
(mean= 53.6 mo, range 50 to 59 mo), 31 5-year-olds (mean= 64.1
mo, range 60 to 71 mo), and 31 6-year-olds (mean=76.7 mo range 74
to 82 mo). Children at each age level were randomly assigned to either
the Digits (n= 63) or Dots condition (N=66) with roughly equal
numbers of children within each age group assigned to each condition.

Stimuli and Procedure. The 10 trials were identical to those in

Fig. 4. Results from Experiment 2: (a) The number of trials with the correct answer for the Digits and Dots tasks as a function of age. (b) The average number of
correct trials for the Digits and Dots task in each age group. The dotted line indicates chance performance. (c) The proportion of children who answered correctly for
each of the test items in the Digits and Dots tasks. (d) The correlation between the number of correct trials in the Dots task and that in the Digits task.
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Experiments 1 and 2 in both the Digits and Dots condition; the only
difference was the question asked. The experimenter said “Look at
these. Look at this one. Now, look at this one. Look at them both before
you make your choice. Which one is more?” There were no warm-up
trials. The procedure in both conditions began with the presentation of
the two choice stimuli for the first trial. The order of the 10 trials was
randomly determined for each child.

4.2. Results and discussion

Children performed quite well in both conditions, albeit perfor-
mance was better in the Dots than Digits condition (89% vs 79%). As
shown in Fig. 5a), correct responses were reliably related to continuous
age for both the Dots condition, R2= 0.19, F (1,64)= 14.5, p < .001,
and Digits condition, R2= 0.19, F (1, 61)= 14.1, p < .001. A 4 (Age
group) by 2 (Stimulus condition) analysis of variance yielded only the
two main effects of Age group, F (3, 121)= 4.73, p < .01, partial
η2= 0.12 and Stimulus condition, F (1, 121)= 13.89, p < .001, par-
tial η2= 0.1, with older children performing better than younger
children and with performance in the Dots condition superior to per-
formance in the Digits condition (see Fig. 5b). As shown in Fig. 5c,
children performed well (> 75%) on all items except the comparisons
of the two 3-digit-numbers (which had ratio differences near 1).
Overall, quite young children performed very strongly in the Dots
condition, which is consistent with what is known about the early de-
velopment of perceived quantities and the greater than 9-fold difference
between the target and the foil on 6 of the 10 trials. Children’s success
in making magnitude judgments also informs their failure (for children
below age 6 years) to map number names to these same quantities.
Although Experiment 3 shows that all children were well able to dis-
criminate quantities such as 21 from 201, Experiments 1 and 2 showed
that children of the same age group do not know that “twenty-one” is
the name for an array of 21 dots, a failure that apparently does not

reflect difficulties in discriminating the quantities.
The new finding is that children also responded well in the Digits

condition. Apparently, their emerging knowledge of the written multi-
digit numbers includes at least partial knowledge of how these symbols
are ordered by relative magnitude, a beginning sense of their meaning.
However, given the items used in Experiment 3 (borrowed from
Experiments 1 and 2), children’s success may be due to rather un-
sophisticated understanding of how the written forms relate to mag-
nitudes. In the Digits condition, children could respond correctly on 6 of
the 10 items simply by knowing that more digits (3 digits versus 2 di-
gits) indicate bigger amounts. However, as indicated in Fig. 3c, the
number of children performing above chance on either or both of the
two items with the target and the foil composed of 3 digits (206 vs. 260,
350 vs. 305) is greater than expected by chance (chi-square (1)= 4.5,
p= .03). Although the 206 vs. 260 comparison (M=68.2%, two-sided
binominal test: p= .005) appeared to be easier than the 350 vs. 305
comparison (M=52.3%, two-sided binominal test: p= .8), the overall
result suggests that preschool children may be developing more so-
phisticated knowledge than simply counting the numbers of digits, a
hypothesis that we further test in the next experiment.

5. Experiment 4

In Experiment 4, we used more challenging comparisons to probe
children’s knowledge about the relative magnitudes of multi-digit
numbers, using a within-subject design to also determine whether
children’s magnitude comparisons of written multi-digit numbers are
independent of or related to their abilities to make relative magnitude
judgments of the same quantities in dot arrays.

5.1. Method

Participants. The participants were 62 (31 male) children recruited

Fig. 5. Results from Experiment 3: (a) The number of trials with the correct answer for the Digits and Dots tasks as a function of age. (b) The average number of
correct trials for the Digits and Dots task in each age group. The dotted line indicates chance performance. (c) The proportion of children who answered correctly for
each of the test items in the Digits and Dots task.
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from the same population as the previous experiments and none had
participated in any of the prior experiments. There were 13 3-year-olds
(mean=40.7 mo, range 36 to 47 mo), 19 4-year-olds (mean=53.7
mo, range 48 to 58 mo), 16 5-year-olds (mean= 65.1 mo, range 60 to
70 mo), and 14 6-year-olds (mean= 75.8 mo range 72 to 81 mo).
Children in each age group were randomly assigned to either the Digits
or Dots condition as the first tested condition. Children were tested in
the two conditions on separate days at their daycares or nursery schools
with at least one day but no more than 10 days separating the two
testing sessions.

Stimuli. The 10 comparison trials were constructed as in
Experiment 3 and consisted of the following three kinds: (1) 2-digit
number comparisons—11 v 24, 16 v 23, 30 v 60; (2) 2- v 3-digit number
comparisons—15 v 105, 21 v 201, and (3) 3-digit number compar-
isons—220 v 223, 321 v 323, 525 v 585, 305 v 350, 206 v 260. The 3-
digit comparisons differ in one-place—the tens or ones—or are trans-
positions of the ten’s and one’s place. These 3-digit number compar-
isons provide a strong test of children’s ability to make magnitude
judgments given the written forms.

Procedure. There were no warm-up trials. The procedure in both
conditions began with the presentation of the two choice stimuli for the
first trial. The experimenter said “Look at these. Look at this one. Now,
look at this one. Look at them both before you make your choice. Which
one is more?” The order of the 10 trials in each condition was randomly
determined for each child.

5.2. Results and discussion

Fig. 6a shows individual performance in the Dots and Digits con-
ditions as a function of continuous age. Performance in the Dots con-
dition was only weakly related to continuous age, R2= 0.09, F (1,
60)= 5.57, p= .02, as most children performed above chance, t
(61)= 15, p < .0001. Performance in the Digits condition, in contrast,

was strongly related to age, R2= 0.41, F (1, 60)= 41.69, p < .0001.
In this harder test of the relative magnitude meaning of written digits,
younger preschoolers performed quite poorly but older preschoolers
performed quite competently. An analysis of variance for 4 (Age
group) by 2 (Stimulus condition) by 2 (Order of Tasks) mixed repeated
measure design revealed a main effect of Age group, F(3, 54)= 13.46,
p < .001, partial η2= 0.31, and a main effect of Stimulus condition, F
(1.54)= 4.58, p < .05, partial η2= 0.22. The interaction between Age
and Condition was also significant, F(3,54)= 3.01, p < .05, partial
η2= 0.09; as shown in Fig. 6b, the difference between performance in
the Dots and Digits condition declined with age. No other main effects
or interactions approached significance. Fig. 6b also shows that chil-
dren’s overall performances in both conditions were quite strong after
5 years of age. In particular, for the Digits condition, all age groups
except for the 3-year-olds (t (12)= 1.4, p= .2) performed significantly
higher than chance (ts > 3.3, ps < 0.004). As shown in Fig. 6c, this
includes many of the 3-digit number comparisons; these require an
understanding of the magnitude implications of places in the re-
presentational system. However, performance in the two tasks were
unrelated, r (60)= 0.03, p= .8. As is apparent in Fig. 6d, children with
the same level of performance in the Dots condition varied in their
performance in the Digits conditions from quite poor to perfect. These
results indicate that preschool children’s emerging knowledge about the
symbol system ultimately goes beyond mapping names to written
numbers (certainly by 5 years of age) to include an initial sense of the
meaning, the relative magnitudes indicated by the symbols. This
emerging knowledge appears unrelated to and is not predicted by their
ability to make relative magnitude comparisons of the physical quan-
tities.

The results of Experiments 1 to 4 indicate that preschool children
are developing knowledge of how written multi-digit numbers re-
present large quantities and that these developments appear unrelated
to their abilities to directly compare the perceptual quantities or to map

Fig. 6. Results from Experiment 4: (a) The number of trials with the correct answer for the Digits and Dots tasks as a function of age. (b) The correlation between the
number of correct trials in the Dots task and that in the Digits task. The dotted line indicates chance performance. (c) The average number of correct trials for the
Digits and Dots task in each age group. (d) The proportion of children who answered correctly for each of the test items in the Digits and Dots tasks.
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number names to those quantities. In all four experiments, performance
in the Digits task was strongly related to continuous age whereas per-
formance in the Dots task was not or weakly related to age. This fact
makes sense if these are two independent paths to understanding large
numbers. Knowledge about multi-digit notation must emerge from ex-
posure to heard number names and written digits; it is knowledge about
a cultural artifact and thus experience in the world is a driver of this
knowledge. Perceiving and comparing large sets of objects is, in con-
trast, a core perceptual ability (Dehaene, 2011; Halberda et al., 2008)
that could be more strongly influenced by intrinsic individual differ-
ences than by experience. The main conclusion from Experiments 1 – 4
is this: There is a route to understanding large numbers that begins
early and concerns knowledge about the symbol system, and is not
strongly related to the ability to perceive and judge those same quan-
tities as sets of things.

6. Experiment 5

Experiment 5 was designed to deepen our understanding of chil-
dren’s beginning knowledge of the symbol system—names and written
forms—in two ways. First, we included even more challenging com-
parisons. Second, we examined within-subjects the relation between
children’s mapping of number names to written digits and their ability
to make relative magnitude judgements given just the written form,
making the final point that emerging knowledge of the two symbolic
codes—names, written forms, and their relative magnitudes—are
tightly connected, robust when tested with a variety of numbers, and
strengthening steadily over the preschool period.

6.1. Method

Participants. The participants were 54 preschoolers (28 male) re-
cruited from the same population as Experiments 1 to 4:14 3-year-olds
(mean 41.5, range 36 – 47months), 13 4-year-olds (mean 51.9, range
48 to 58months), 13 5-year-olds (mean 64.1, range 60 to 71months),
and 14 6-year-olds (mean 75.6, range 72 to 75months). Children were
tested in the laboratory or at preschools. None had participated in the
previous experiments.

Stimuli. The stimuli were written numbers. The 15 comparisons for
the “which-More” task were: 3 v 7, 6 v 8, 11 v 19, 14 v 41, 16 v 62, 26 v
73, 30 v 60, 72 v 27, 100 v 10, 101 v 99, 123 v 321, 220 v 223, 525 v
585, 670 v 270 and 4620 v 4520. The “which-N” trials included some of
the comparisons used in the previous experiments but also added sev-
eral new items to add converging evidence on preschool children’s
competence in mapping number names to written digits. The 16 items
were: 2 v 8, 11 v 24, 12 v 22, 15 v 5, 21 v 201, 36 v 306, 42 v 402, 64 v
604, 85 v 850, 105 v 125, 305 v 350, 206 v 260, 670 v 67, 100 v 1000,
807 v 78, 1002 v 1020. (There is one fewer item in the “which-More”
task than “which-N” task because of an error in the construction of the
“which-More” test set).

Procedure. The design and procedures for the “which-N” and
“which-More” task were identical to those used in the previous ex-
periments. Children were tested on the same day with a break between
tasks. Half were tested on “which-N” first and half were tested on
“which-More” first.

6.2. Results and discussion

In Fig. 7a, the grey dots show scatterplots of children’s performances
on the which-N task as a function of age and the black dots show
performance on the which-More task as a function of age. Performance
on both the which-N and which-More tasks were strongly related to age
(R2 (52)= 0.30, p < 0.001; R2 (52)= 0.31, p < 0.001). Performance
on these two tasks were also strongly correlated to each other (r
(52)= 0.56, p < 0.001), Fig. 7e.

Table 1 shows the results of two multiple regression models: (a) Age

and performance in the which-N task predicting performance in the
which-More task and (b) Age and performance in the which-More task
predicting performance in the which-N task. The which-N task uniquely
explained 31% of the variance in the which-More task, and the which-
More task uniquely explained 30% of the variance in the which-N task.
A 4 (Age group) by 2 (Task) by 2 (Task order) ANOVA revealed a sig-
nificant main effect of age, F (3, 46)= 11.66, p < .0001. partial
η2= 0.33. There was no main effect of task, F (1, 46)= 2.76, p= .1 or
task order F (1, 46)= 0.01, p= .9. Although these analyses cannot tell
us precisely how performance in the two tasks develop, they suggest
that they are developing as an early unified system during the preschool
years: children’s knowledge about the names of and relative magnitudes
represented by written multi-digit numbers grow steadily and jointly in
3- to 6-year-olds as shown in Fig. 7b.

7. Aggregated data analysis

To more fully understand what children know about multi-digit
numbers and the quantities they represent, we combined data from all
five experiments and characterized each test item according to four
mutually exclusive categories. As shown in Table 2, the four categories
are as follows, quantities written as: Single-digit numbers (S, e.g., 3 v
7); Multi-digit numbers with different places (MD-DP, e.g., 42 v 402);
Multi-digit numbers with the same number of places but no transposi-
tion (MD-SP-no-T, e.g., 525 v 585). Multi-digit numbers with the same
number of places and transpositions (MD-SP-T, e.g., 305 v 350). To
correctly answer items that involve transpositions, children need to
know that number words are mapped onto written numbers following
the left-to-right order and that the left-most-digits matter more for the
magnitude of numbers.

Fig. 8a shows the accuracy of different types of items in the which-N
task with digits. As can be seen, children of all age groups performed
well (above 70%) with single digits. By age 4, children performed above
chance (t (45)= 4.13, p= .0001) on multi-digits items that involve the
same number of places but no transposition (e.g., 525 v 585). To suc-
ceed on these items, children must know, at the minimum, how the
variants of number names for different places map to the written digits.
For example, if they had heard “five-hundred twenty-five”, they could
infer that the correct number must have the digit “2” rather than “8” in
the written form because “twenty” also names “2.”. Around the same
age, children show increasing success in mapping names to digits that
differ in the number of places (t (45)= 2.79, p= .007), although
performance is slightly lower than with single digits (t (75)= 2,
p= .048). Success on these items shows a beginning understanding of
places, that “3-hundred” and “thirty” both refer to a “3” but signal
different spatial locations of that 3 in the written form. Multi-digit
numbers with the same number of places and transpositions require
that children know that the temporal order of number words are
mapped onto a left-to-right spatial order of written numbers: it is not
until age 5 that children performed above chance level (t (45)= 2.89,
p= .005) on these items. By age 6, children performed well (> 75%)
on all item types.

Fig. 8b shows the accuracy of different types of items in the which-
More task with digits. Here, the only category on which 3-year-olds
performed above chance (t (48)= 7.81, p < .001) was multi-digit
numbers with different places (e.g., 42 v 402), suggesting that chil-
dren’s first approach to understanding the magnitudes of written forms
may be based on the number of components or the amount of written
stuff, an approach seen in and perhaps borrowed from children’s early
ideas about words (Bialystok, 1992). By age 4, children also performed
above chance on single digit number comparisons (t (29)= 4.01,
p < .001). The difference in the which-N and which-More task for
single digit numbers suggest that children learn to map number names
to written digits before they understand the quantities that those digits
represent (see also, Hurst, Anderson, & Cordes, 2016; Sullivan & Barner,
2014). By age 5 years, children performed above chance on multi-digit
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numbers with same places but no transposition (t (43)= 9.74,
p < .001); and it was not until age 6 that they did so with multi-digit
numbers that involved transposition (t (42)= 9.91, p < .001). Overall
the results in the Digits tasks suggest that links between number names
and written forms of multi-digit numbers are formed early and grow
incrementally with knowledge about the relative magnitudes re-
presented by the symbols developing closely behind. A more direct test
of this last point is clearly required before strong conclusions are made.

Performances in the Dots tasks show very different developmental
patterns than those in the Digits tasks. For the which-N task, as shown
in Fig. 8c, children younger than 6 years of age only make accurate
mappings for single digit numbers; performances on all the other ca-
tegories were at or below chance for 3-, 4- and 5-year-olds. For the
which-More tasks, in contrast, all children, even 3- year-olds, perform
above chance across all item types (ts > 3.3, ps < 0.002) as shown in
Fig. 8d. Prior to 6 years of age, preschool children can make competent
judgments about physical quantities represented by multi-digit num-
bers, but they apparently have little knowledge about how these

specific quantities link to the numbers that represent them.
The four categories of trial types are based on the properties of the

notational system and thus have little to do with the relevant properties
that underlie children’s judgments of actual quantities, which are based
on set size (Halberda & Feigenson, 2008; Lyons, Nuerk, & Ansari,
2015).). Accordingly, we also analyzed performances in the Dots and
Digits tasks according to the ratio between the set sizes of the to-be-
compared items, focusing solely on the multi-digit numbers because
previous research has suggested that physical quantity representation
might be significantly different between small and large arrays
(Sullivan & Barner, 2014), and because children’s knowledge of multi-
digit is the current focus. Consider the pattern of performance for the
dot arrays first. In the which-More task—a form of magnitude com-
parison which has been widely studied with dot arrays—we find what
has been reported many times (Dehaene, 2007; Halberda & Feigenson,
2008): For all age groups, overall performance is strong but decreased
as the ratio between the two numbers increased (Fig. 9a). The which-N
task, which requires children to link a symbolic code to a perceived

Fig. 7. Results from Experiment 5: (a) The number of trials with the correct answer for the which-N and which-More tasks as a function of age. (b) The average
number of correct trials for the which-N and which-More task in each age group. Chance performances were 7.5 for the which-More task and 8 for the which-N task.
(c) shows the proportion of children who answered correctly for each of the test items in the which-N task. (d) The proportion of children who answered correctly for
each of the test items in the which-M task. (e) The correlation between the number of correct trials in the which-N task and that in the which-More task.
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quantity, shows a very different pattern. As shown in Fig. 9b, all age
groups except 6-year-olds performed poorly at all ratios. The oldest
children were much more successful, performing well above chance
with most of the ratios and only showing an effect of ratio when it
approached 1 (and the limit of perceptual discriminability). Although
earlier developing symbol knowledge appears unrelated to the per-
ception of the physical quantities, 6-year-olds appear to be forming an
integrated triple-code system that pulls together developmentally prior
and separate knowledge about big numbers.

Fig. 9c and d shows the performances of children in the Digits task
as a function of the ratio difference of the represented quantities. Just as
the categories of symbolic forms tell us little about children’s judge-
ments of physical quantities, ratio differences appear to have little re-
levance to children judgments of the written forms, both in mapping
names to those written forms and in making magnitude judgements.
These findings provide further evidence of the early independence of
learning about multi-digit numbers and the perception and dis-
crimination of the physical quantities represented by those numbers.

In summary, the analyses of the aggregated results indicate the
following: Children’s understanding of the two symbol system co-
des—names and written forms—show incremental development char-
acterized not by the magnitude of physical quantities represented by
the multi-digit numbers but by increasing knowledge about the codes
themselves. Children’s perceptual discrimination of the physical quan-
tities represented by multi-digit numbers is limited only by the ratio
difference between the judged magnitudes and appears quite in-
dependent from the structure of the notational system. For multi-digit
numbers (but perhaps not for single-digit numbers), the perceptual
code in the triple-code system appears unlinked to the symbolic codes
until late in the preschool years—emerging in 6-year-olds—and well
after preschool children can map number names to written forms and
make magnitude judgements given only the written forms.

8. General discussion

Considerable evidence indicates that understanding the base-10
notational system is central to success in elementary school mathe-
matics (Anderson, 2013; Mix et al., 2019; Wai, Chan, Au, & Tang, 2014;
Zuber et al., 2009). Considerable research also indicates that place
value concepts are difficult to master for many children late into ele-
mentary school (Ross, 1986; Fuson & Briars, 1990; Fuson, 1990;
Gervasoni et al., 2011; Ross & Sunflower, 1995). Accordingly, much
previous work focused on older children (2nd−5th grade) and their
misunderstandings of place value (Cobb, 1988; Kamii, 1988; Ross,
1986; Ross & Sunflower, 1995 with little research on what preschoolers
might know about multi-digit numbers. The first contribution of the
present findings is the documentation of early knowledge about the
names, written symbols and relative magnitudes of multi-digit num-
bers, findings that have direct implications for understanding why
mastering place value is hard for some (but not all) children. The
second contribution is that the experiments show that this early
knowledge about names and written forms is not built on the mapping
of those symbols to the quantities they denote, a finding with im-
plications for the triple-code system and its development. The following
discussion first considers the implications with respect to the problem
of children’s mastery of place value concepts and then the implications
with respect to the hypothesized triple-code system.

8.1. Preschoolers and place value

Many of the children in the five experiments clearly knew how
number names map to written forms and could make magnitude
judgments given written symbols. Clearly, they had—in some man-
ner—induced the general principles through which they could make
judgments of specific 3- or 4-digit numbers even though they were
unlikely to have had but a few (if any) encounters with these specific
multi-digit numbers. By the time children were five years of age, most
knew several structural regularities: that the first-mentioned number
name corresponds to the left-most written digit, the magnitude in-
dicated by each place decreases from left to right, “five hundred”,
“fifty”, and “five” are all represented by “5” and that variations in the
names associated with the same digit signal different places and dif-
ferent magnitudes. It seems likely these principles are initially derived
based on the surface properties of the symbols, including thinking that
numbers with more digits represent greater magnitudes, and noticing
that the 5 in 500 looks the same as the 5 in 50. Such beginning ideas are
not the complete knowledge necessary for success in multi-digit calcu-
lation which requires an explicit understanding of the multiplicative
hierarchy underlying base-10 notation—that the hundreds place counts
sets of tens, the tens place counts sets of ones, and that 100 is 10 tens,
and 10 is 10 ones, and so forth. Given the difficulty of these explicit
concepts for elementary school children, it is highly unlikely that any of
the children in the present experiments have an explicit understanding
of base-10 principles. But the abilities that preschoolers showed in
making correct judgments about spoken and written numbers is a start
and one not apparently dependent on linking symbols to the quantities
they represent.

Table 1
Two multiple regression models: (a) Age and Accuracy at the which-N task
predicting Accuracy at the which-More task; (b) Age and Accuracy at the which-
More task predicting Accuracy at the which-N task.

B SE B β

(a)
Model 1:
Dependent variable:
Accuracy at the More task
Predictor variables:
Constant 17.962 8.511
Age 0.466 0.169 0.359**
Accuracy at the N task 0.292 0.105 0.362**

(b)
Model 2:
Dependent variable:
Accuracy at the N task
Predictor variables:
Constant 7.476 11.009
Age 0.564 0.211 0.35**
Accuracy at the More task 0.454 0.162 0.365**

Table 2
Items and their corresponding categories.

Category Items

Single-digit numbers (S) 3 v 7, 6 v 8, 2 v 8
Multi-digit numbers with different places (MD-DP) 15 v 5, 15 v 105, 21 v 201, 36 v 306, 42 v 402, 64 v 604, 78 v 807, 100 v 10, 101 v 99, 85 v 850,

670 v 67, 100 v 1000
Multi-digit numbers with same number of places but no transposition (MD-

SP-no-T)
11 v 24, 16 v 23, 30 v 60, 220 v 223, 321 v 323, 525 v 585, 11 v 19, 16 v 62, 26 v 73, 670 v 270,
1620 v 1520, 12 v 22, 105 v 125

Multi-digit numbers with same number of places and transpositions (MD-SP-
T)

206 v 260, 305 v 350, 14 v 41, 72 v 27, 123 v 321, 1002 v 1020
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Fig. 8. Accuracy by item type, task and age group: (a) accuracy in the which-N task with digits; (b) accuracy in the which-More task with digits; (c) accuracy in the
which-N task with dots; (d) accuracy in the which-More task with dots. The gray dotted line represents the chance level.

Fig. 9. Performance in the which-More and which-N task with dots and digits as a function of the ratio between the two choices: (a) accuracy in the which-More task
with dots; (b) accuracy in the which-N task with dots; (c) accuracy in the which-More task with digits; (d) accuracy in the which-N task with digits. The gray dotted
line represents the chance level.
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It seems highly likely that preschool children’s early (albeit in-
complete) knowledge of the symbol system plays a role in how well
they learn from explicit instruction about base-10 notation. In the
classroom, formal instruction typically includes talk about multi-digit
numbers in highly cluttered contexts that include multiple written
multi-digit numbers along with physical models of sticks or blocks
being grouped and ungrouped. Prior knowledge about multi-digit
number names, how they map to written forms, and their relative
magnitude may help guide visual attention to the right referents at the
right time (Huettig, Rommers, & Meyer, 2011; Tanenhaus, Spivey-
Knowlton, Eberhard, & Sedivy, 1995). Facility with spoken number
names and written representations may also support the forming of
robust and correct memories of classroom instruction and in doing so
may prevent the formation of wrong ideas that characterize some
children even as late as sixth grade (Gervasoni et al., 2011; Ross &
Sunflower, 1995). Thus, early learning about the surface properties of
the naming and notational system may support later learning about
place value in the same way that building perceptual fluency in re-
cognizing the structure of an equation or how a function relates to a
graph has been shown to advance learning in higher mathematics
(Goldstone, 1998; Kahnt, Grueschow, Speck, & Haynes, 2011; Kellman,
2002; Kellman, Massey, & Son, 2010; Landy & Goldstone, 2007).

Preschool knowledge about the symbol system may also play a more
direct role in the formation of the core principles of base-10 notation.
We know from computational models (Grossberg & Repin, 2003; Rule
et al., 2015) that the mappings of number names to written forms in-
stantiate deeper latent knowledge about base-10 principles. This im-
plicit knowledge could be prerequisite to an explicit understanding of
base-10 notation. This hypothesis is motivated by analogy as to how
humans learn explicit concepts of syntax. Speakers of English, in their
everyday use of language, show an implicit understanding of syntactic
categories such as noun phrase and verb phrase. This implicit knowl-
edge can be made explicit through formal instruction in linguistics.
Critically, prior intuitive knowledge holds the meaning to which ex-
plicit categories such as “noun phrase” or “verb phrase” refer because
those categories do not refer to perceptible entities but rather to the
relational structure of variables within the syntactic system. Mathe-
matical knowledge about base-10 principles is arguably similar; the
meaning of places does not lie in any specific quantity nor in bundled
sticks arranged in sets of 10 but in the relational structure among places
that is base-10 notation. If this idea is right, then successful instruction
in making those relational concepts explicit may depend on the hidden
latent knowledge about place value that emerges from the mappings of
names to written forms.

Both of these hypotheses—perceptual fluency and latent knowl-
edge—along with the evidence of preschool children’s early learning
about the symbols suggest that solutions to school-age children’s diffi-
culties in mastering place value may be found by understanding what
children know before school. The findings across the five experiments
show not only incremental growth in knowledge about multi-digit
numbers during the preschool years but also marked individual dif-
ferences. Some children as young as three years of age already knew a
lot about how number names map to written forms and the relative
magnitudes they signify. Some children as old as 5 and 6 years, how-
ever, performed quite poorly on the which-N and which-More tests.
Understanding how these individual differences play out in the context
of formal instruction will require that we go beyond the which-N and
which-More to direct assessments of perceptual fluency, robustness of
memory, and the possible engagement of latent knowledge about base-
10 principles in the context of explicit instruction.

If early knowledge about the multi-digit numbers supports later
mastery of place value, then we also need to determine the kinds of
experiences that give rise to this early knowledge. Past research pro-
vides two relevant pieces of information. First, we know that preschool
children whose parents or teachers talk about numbers—in a variety of
contexts—have greater success in formal learning about numbers

(Levine et al., 2010). Second, we know that the amount of talk about
multi-digit numbers in everyday conversations with children is ex-
tremely sparse (Dehaene, 1992; Dehaene & Mehler, 1992; Levine et al.,
2010). Thus, children with more number talk in their environments are
likely to acquire knowledge about the symbol system earlier than those
without such talk, but even the children in the richest number en-
vironments may not be hearing individual multi-digit names or seeing
their written forms with great frequency. Thus, it would seem that
preschool children must be learning the principles behind number
names and written forms through encounters with a sparse sampling of
names and numbers that occur with relatively low frequency compared
to other forms of talk. How might this work?

Number names and written digits comprise two parallel relational
structures of the kind studied within the framework of Structure
Mapping (Gentner, 1983, 2010; Gentner & Colhoun, 2010. Given
varying but relationally alignable surface forms—for example, models
of the solar system and atoms or relational series such as big-little-bi-
g—learners can discover the relational structure and apply that struc-
ture to new instances (Gick & Holyoak, 1983; Goldwater, Bainbridge, &
Murphy, 2016; Loewenstein, Thompson, & Gentner, 1999). Moreover,
research with children as well as adults indicates that relational struc-
tures may be learned from exposure to two alignable series, without
explicit teaching or feedback (Christie & Gentner, 2010; Fisher, 1996;
Gentner et al., 2016; Namy & Gentner, 2002). We conjecture that the
alignable structure of number names and written forms may be key to
the early knowledge about multi-digit numbers shown by the pre-
schoolers in the present study. Relatively sparse encounters—from
reading calendars, street addresses, price tags in the stores, learning the
counting list, games such as Pokémon—may, because of the alignable
structure, yield latent (and thus generalizable) knowledge about the
underlying relational structure of places and their values. Although
many researchers have pointed to the non-alignability of names and
numbers across the teens (Fuson & Kwon, 1991, 1992; Geary, Bow-
Thomas, Liu, & Siegler, 1996; Ho & Fuson, 1998; Bussi, 2011; Saxton &
Towse, 1998), there apparently is sufficient evidence in many preschool
children’s experiences to induce some principles about how the names
map to written forms and how written forms represent relative mag-
nitudes (see also, Hurst et al., 2016; Sullivan & Barner, 2014). The
experiences and mechanisms through which many but not all preschool
children develop the abilities documented in the present studies is a
critical target for future research.

8.2. The triple-code system

The perception and representation of discrete quantities has been
conceptualized as the foundation of the triple-code system (Dehaene,
1992; Dehaene & Cohen, 1995) with the specific proposal that the
symbols represent and gain their meaning through perceptual re-
presentations of physical quantities. Children entering school with ro-
bust understanding of the links among all three components of the tripe
code for single-digit numbers—their written forms, names and specific
quantities (Hurst et al., 2016). Multi-digit notation, however, represents
much more than physical quantities; it represents a set of relations
among all possible numbers. The present results suggest that learning
about these big numbers does not begin with a mapping of specific
numbers to the quantities they represent, but begins with learning
about the relational patterns in the surface forms of names and written
digits.

One potential limitation in the current study is that we asked to
children to judge physical arrays of quantities that like those in the
world do not control for the many dimensions (e.g., area, density,
contour length) that co-vary in with number (Cantrell & Smith, 2013).
Previous studies measuring the Weber’s law in terms of the ratio dif-
ference between quantities require confidence in that the perceptual
discrimination is based on discrete number alone and so attempted to
control for the many other discriminated quantities (with variable
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results, Cantrell & Smith, 2013; Clayton, Gilmore, & Inglis, 2015; Smets,
Sasanguie, Szücs, & Reynvoet, 2015). We did not include these controls
because our research question was not about the acuity of children’s
number description but about whether knowledge about the spoken
and written symbols depended on having them mapped to the physical
quantities they represented. As a result, we may have over-estimated
children’s performance in the non-symbolic tasks. Given past research
(see especially, Clayton et al., 2015; Smets et al., 2015), it is likely that
adding a stricter control in the current study would result in even worse
performance in the dots tasks. Although not tested here, this possibility
would lend more support for the argument that the understanding of
multi-digit symbolic numbers is not based on non-symbolic re-
presentation.

Young children’s integrated triple-code knowledge of single digits
likely plays an important role in the discovery of these relational pat-
terns in multi-digit numbers. Children’s knowledge of the quantities 1
through 10, through direct perception (Huang, Spelke, & Snedeker,
2010; Odic, Le Corre, & Halberda, 2015; Pinhas, Donohue, Woldorff, &
Brannon, 2014; Wagner & Johnson, 2011) or counting (Carey, 2001;
Gentner, 2010; Le Corre & Carey, 2007) is likely essential to under-
standing the relative magnitudes of multi-digit numbers, and since
places count sets of multiples of tens, the determination of exact
quantities for counts from none to 10—through counting (Gallistel &
Gelman, 1992; Wynn, 1992) or by linking names to perceptual re-
presentations via processes such as subitizing, pattern recognition or
object files—will be essential to an explicit understanding of base-10
principles. Children’s abilities to determine the exact quantity of small
set sizes have also been shown to be related to children’s developing
understanding of basic numeracy principles, including cardinal con-
cepts of numbers as well as addition and subtraction concepts (Carey,
2001, 2010; Le Corre & Carey, 2007; Libertus et al., 2011; Mazzocco
et al., 2011; Park & Brannon, 2014; Sullivan & Barner, 2014) and these
must be generalized to very large numbers. But the present results also
clearly show that children’s early understanding of large numbers does
not depend on linking the symbols to the exact—or approx-
imate—quantities they signify. However, the present findings suggest
that 6-year-olds are at least beginning to integrate the two systems.
Given this integration, the open question is how symbol knowledge
influences perceptual representations and how perceptual representa-
tions influence symbol knowledge. The extant evidence strongly sug-
gests influences in both directions, although their nature is not well-
understood (Landy, Charlesworth, & Ottmar, 2016; Lyons, Ansari, &
Beilock, 2012; Mussolin et al., 2014; Park & Brannon, 2014; Sullivan &
Barner, 2014; Thompson & Opfer, 2010). All of this suggest that the
development of the triple-code system is likely to be far more com-
plex—and nuanced—than that of providing a direct perceptual
grounding for the symbols. Other evidence also suggests a complicated
developmental trajectory in that training in solving math problems
benefits judgments of physical quantities and training perceptual jud-
gements of physical quantities benefits mathematics problem solving
(Lyons, Bugden, Zheng, De Jesus, & Ansari, 2018; Park & Brannon,
2013).

Nonetheless, the importance of the triple-code system may be for
very early entry into learning about numbers, and perceptual judgments
of physical quantities and mathematics itself may depend on funda-
mentally different skill sets. Elementary school mathematics—ar-
ithmetic—is about determining exact quantities. But mathematics
proper is not; it is instead about systems of relations among quantities.
There are also some empirical indicators that symbolic skills may be the
more critical factor in later achievements. Meta-analyses of the relation
between older children’s performances in symbolic and non-symbolic
number tasks with later mathematics achievement (Chen & Li, 2014;
Fazio, Bailey, Thompson, & Siegler, 2014; Schneider et al., 2017) in-
dicate that symbolic knowledge is strongly related to later mathematics
achievement (Göbel, Watson, Lervåg, & Hulme, 2014), but that non-
symbolic knowledge is only weakly related. Further, in some analyses

of these predictive relations to later mathematics achievement, per-
formance in symbolic and non-symbolic tasks have been found to load
on different factors, and there are limited or no correlation between
symbolic and non-symbolic magnitude knowledge (Lyons et al., 2012;
Sasanguie, Defever, Maertens, & Reynvoet, 2014), just as observed
here. The new contribution of the present study is that it shows this
same non-relation in preschool children who show early competence in
learning about the relational structure in symbolic representations of
numbers larger than 100. The findings bring us to new questions and
emphasize the importance of understanding what preschool children
know about the notational system, the learning environments that
support this early knowledge, and its consequences for later mathe-
matics learning.
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