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ON THE CONTINUITY OF MIND: TOWARD A
DYNAMICAL ACCOUNT OF COGNITION

Michael J. Spivey and Rick Dale

It should be obvious by now that this minute inflow of stimulus energy does not consist of

discrete inputs—that stimulation does not consist of stimuli. The flow is continuous. There

are, of course, episodes in the flow, but these are nested within one another and cannot be

cut up into elementary units. Stimulation is not momentary. (J. J. Gibson, 1979).

I. Introduction

In 1960, J. J. Gibson reviewed technical uses of the term stimulus and found

that it did not have a consistent agreed-upon definition, but instead con-

noted several diVerent conceptions of ‘‘stimulating’’ an organism. Most of

those conceptions did, however, have a property also found in the word’s

original uses: A stimulus is a temporally discrete, momentary happening in

the life of an organism. Challenging this intuition, Gibson’s ecological

psychology assumes at its foundation the continuity of the stimulation in

the surrounding environment. What this means is that the ‘‘flowing array of

stimulus energy,’’ as Gibson called it, is never presegmented into easily

defined independent chunks, or ‘‘stimuli,’’— even though we feel as though

we perceive it that way.

Before Gibson, Dewey (1986) famously made a similar point in his infl-

uential critique of the reflex arc concept. The reflex arc concept was a

relatively new idea, framing the questions of psychology in terms of causal

arcs among stimulus, mental event, and response. Essentially, studying the

causal arcs between just the former two, or the latter two, was considered a

legitimate scientific enterprise in and of itself. In contrast, treating the
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progression of the three components as one continuous process, which

naturally loops back on itself, was what Dewey influentially encouraged

(Leahey, 1994). From his perspective, actions take place over time and they

continuously alter the stimulus environment, which in turn continuously

alters mental activity, which is continuously expressing and revising its

inclinations to action. One of the most famous reactions to Dewey’s criti-

cism, behaviorism, found a long-standing solution by eliminating the second

(mental) stage. But Dewey’s critique still stands: Segmenting the natural life

of an organism into discretely identifiable stimuli and responses is artificial

and potentially misleading.

Although originally aimed predominantly at behaviorism, Gibson and

Dewey’s critiques echo into modern cognitive psychology. Essentially, cog-

nitive psychology replaced behaviorism’s emphasis on ‘‘stimulus and re-

sponse’’ with an emphasis on ‘‘stimulus and interpretation’’—not really

addressing the continuity problem. But if the environmental stimulation

impinging on our sensory systems is almost always partially overlapping in

space and continuous through time, why would our minds work in the

staccato fashion of a digital computer, momentarily entertaining one discrete

stable non-overlapping representational state, and then instantaneously

flipping to entertain another one?

The goal of this chapter is to challenge the notion of discrete representa-

tional states. The mind, like Gibson’s stimulation, exists in continuity,

moving gradually between mental states, never standing still in time. Indeed,

these ‘‘mental states’’ themselves are not really static states at all, but rather

graded regions in mental state-space that are more or less interpretable than

others and are briefly visited (or perhaps merely ‘‘flirted’’ with) by the mind

during its continuous motion through this state-space. We oVer the ‘‘conti-

nuity of mind’’ as a rubric for a psychological framework in which internal

perceptual-cognitive processing exhibits continuous change in the salience of

multiple simultaneously active representations. This framework forces one

to rethink many representational and architectural assumptions that have

persisted in cognitive psychology and poses as an ‘‘intervention’’ procedure

to wean the cognitive sciences from their obsession with formal logical

descriptions of mental representation. The continuity of mind attempts to

replace the overidealized notion of discrete symbolic mental states, bor-

rowed from antiquated artificial intelligence research, with distributed pat-

terns of neural activation that are always partially consistent with multiple

mental states. Most important, this framework focuses on the continuous

temporal dynamics of these patterns of neural activation and the resulting

consequences for descriptions of various perceptual-cognitive processes.

Of course, there exist several important precedents to this line of thinking.

Kelso (1995), for example, explored how dynamic patterns in several
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perceptual and motor processes can be accounted for by the concepts of

coordination and self-organization imported from synergetics (Haken,

1983). Port and Van Gelder (1995) oVered a foundational collection of

papers exploring a wide range of topics in which dynamical architectures

and equations account for a wide variety of behavior. Thelen and Smith

(1994) marshaled these dynamic-systems concepts in the service of explain-

ing and predicting patterns in behavioral development. Even further back,

Gregson (1983) oVered a discussion of time series and recommended a

radical reconceptualization of psychological explanation by invoking time

as a crucial concern.

The proposal herein pushes in some of the same directions as these

preexisting dynamical theses but takes an important, diVerent overall route.

We will focus on processes at a specific time scale, perception and behavior

on the order of hundreds of milliseconds, and how these processes impor-

tantly exemplify the continuity of mind. Mental activity at this time scale has

been a battlefield of dispute between frameworks in cognitive science. For

example, one possible modern target for Dewey’s critique is the computer

metaphor of the mind. This metaphor sees stages of cognitive processing as

temporally discrete representational states (Dietrich & Markman, 2003).

Not only does the approach recommend an analysis of the human mind in

terms of temporally discrete representation, but supposes as an ontological

matter that the mind entertains discrete representations and states. The

processes at the time scale considered here have often involved heated debate

between this and other explanatory frameworks. For years this traditional

computational perspective has enjoyed a firm grip over the time scale,

oVering explanations for diVerent processes in language and perception.

The success of this paradigm permitted the computer metaphor to even

trickle down into explorations of the properties of neural processes. For

example, in the early years of cognitive science, there were a few who were

inspired both by digital computing theory and by the physical processes of

the human brain. These researchers invested quite a bit of intellectual stock

in the idea that populations of spiking neurons would behave more or less

the same as populations of digital bits (e.g., McCulloch, 1965; Von

Neumann, 1958; Wickelgren, 1977; see also Barlow, 1972; Lettvin, 1995;

Rose, 1996).

However, what we know now about real neurophysiological proces-

ses seems to suggest instead great promise for the continuity of mind

rather than the digital computer metaphor. A great deal more has been

learned in the past few decades about how populations of neurons work

(e.g., Georgopoulos, Kalaska, Caminiti, & Massey, 1982; Pouget, Dayan, &

Zemel, 2000; Sparks, Holland, & Guthrie, 1976; Tanaka, 1997; Young &

Yamane, 1992), and it is nothing at all like the instantaneous binary
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flip-flopping from one discrete state to another that characterizes informa-

tion processing in digital computers. In neuroscience, the closest thing to a

classical mental representation is the population code. A population code is

a sparse distributed representation comprised of a group of neurons that

cooperate and resonate in response to a familiar perceptual input. Impor-

tantly, the individual neurons that make up a population code do not appear

to update their states in lockstep to the beat of a single global clock.

Population codes spend a substantial amount of their time in partially

coherent patterns of activity. And thus the brain’s state is often dynamically

traversing intermediate regions of a state-space that contains what could be

described as many meta-stable attractors.

Whether these population codes end up approximating discrete represen-

tations is an important question open to debate. The distant and tenuous

connection between digital symbolic computation and distributed neural

processing is nevertheless an attractive idea to some (cf. Marcus, 2001).

According to this perspective, the activity of populations of neurons is

suYciently approximated by models that use rule-based operations on logi-

cal symbols, despite the fact that real neural hardware does not quite work

that way.

There are two key properties of the representations instantiated by neural

populations that we argue separate them from computer-like symbolic re-

presentations: (1) continuity in time and (2) continuity in space. Continuity in

space has been dealt with elsewhere in roughly two diVerent ways: (1) a

contiguous high-dimensional state-space where proximity serves as similarity

and prototypical representations exist as partially overlapping attractor

basins (e.g., Aleksander, 1973; Edelman, 1999; Elman, 1991; Lund &

Burgess, 1996; Pasupathy & Connor, 2002) and (2) a two-dimensional space

based on sensory surfaces, in which the shape and layout of internal

representations are roughly homologous to actual physical patterns of stim-

ulation (e.g., Barsalou, 1999; Farah, 1985; Johnson-Laird, 1998; Kosslyn,

Thompson, Kim, & Alpert, 1995; Langacker, 1990; Spivey, Richardson, &

Gonzalez-Marquez, in press; Talmy, 1983). Continuity in time has also been

dealt with elsewhere in two (at least superficially) diVerent ways: (1) the

continuous temporal dynamics of the neural connectivity patterns that

constitute knowledge and intelligence changing over developmental time

(e.g., Elman, Bates, KarmiloV-Smith, Parisi, & Plunkett, 1996; Spencer &

Schöner, 2003; Thelen & Smith, 1994), and (2) the continuous temporal

dynamics of representation and behavior in real-time processing (e.g., Kelso,

1994; Port & Van Gelder, 1995; Spivey, in preparation). This latter emphasis

on continuous temporal dynamics in real-time processing is where this

chapter will focus its arguments against digital-computational accounts of

cognition.
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By describing demonstrations, in psycholinguistics and in visual percep-

tion, of representations that are analog (rather than digital), partially over-

lapping, and change gradually over the course of hundreds of milliseconds,

we hope to convince some readers that symbolic accounts of cognition that

do not accommodate such continuous temporal dynamics are missing a

crucial aspect of an accurate description of the mind. Such graded mental

states appear to be more than just temporary transitions between discrete

mental representations but instead may be the modus operandi of the mind.

Therefore, we suggest that approximating patterns of neural activation, and

the continuous temporal dynamics of these patterns, with a metaphor of

discrete symbolic computation, is not merely a stretched analogy, but in

fact a misleading one. Although the conversion of a continuous trajectory

through a high-dimensional state-space into a string of emitted symbols is a

powerful mathematical concept, it faces statistical problems with regard to

the exact placement of symbolic partitions (Bollt, Stanford, Lai, &

Zyczkowski, 2000), it faces representational problems with regard to how a

discrete perfectly repeatable logical symbol is implemented by an inherently

noisy and distributed neural system, and it faces architectural problems with

regard to an unrealistic degree of modularity required of the systems to and

from which these symbol strings are being sent. Instead of pretending to be

able to chop time into chunks that are associated with individual nonover-

lapping symbolic representations, we argue that patterns of brain and be-

havior inevitably exhibit temporal and representational continuity and

that adopting this perspective can help predict and explain a considerable

database in the study of cognition.

II. Continuously Changing Graded Representations

A. Probabilistic Versus Pure Mental States

Before evaluating support for continuity in language and vision, we present

some simple illustrations that may help further limn our perspective. First,

consider a very simple demonstration of how we might visualize continuous

change in neural population codes. Readers familiar with dynamical meta-

phors will doubtless find this example highly simplistic. Nevertheless, it will

help solidify the predictions about temporal dynamics that are made by the

continuity of mind thesis.

Imagine you’ve taken over a sturdy stool at the bar of your favorite pub,

awaiting a close friend. Call him Ken. He’s late. After a couple beers, you

continue to keep your eye out for him, noting various faces as they enter the

pub. Imagine catching glimpses of someone you think might be Ken among

AU:4
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an entering crowd. In that brief period of time, before being certain of this

person’s identity, your brain will exhibit patterns of activity that are partially

consistent with a number of alternative people. Figure 1A is a cartoon

illustration of a 100-ms time slice of that brain state—that uncertain, fuzzy

state—if one were measuring a mere 14 of your cortical neurons (out of

about a billion).

In the idealized brain state in Fig. 1A, a few neurons are excited near their

maximum firing rate, several neurons are moderately above their resting

level of activation, and several neurons are conspicuously inhibited below

their resting level. (As these are firing rates and not action potentials, this

‘‘state’’ is obviously an average over the 100-ms time slice.) Although this

pattern of neural activation can be treated as a discrete location in the space

of possible brain states, it does not correspond to a discrete, pure, mental

state. That is, we have devised this demonstration such that the pattern of

neural activity in Fig. 1A corresponds to a brain state that is partially

consistent with two diVerent identifiable mental states (Fig. 1B and C; the

surface similarity in the two names here is irrelevant for our purposes).

Imagine we had the capacity to record previous moments in which you

perceived Ken and another friend Kevin, and could establish which specific

set of neurons corresponded to this identification, averaged over many

instances. Figures 1B and C depict the pattern of neural activity that would

emerge in the situations, ‘‘I see Ken’’ and ‘‘I see Kevin,’’ respectively. In Fig.

1B, one can see that neurons 1, 3, 6, 7, and 9 compose the population code of

‘‘I see Ken.’’ Partially overlapping with this, in Fig. 1C, it becomes clear that

neurons 1, 4, 6, 7, and 10 compose the population code ‘‘I see Kevin.’’ Due

to the complexity of multiple sensory inputs, the nonlinear dynamics in

neural processing, and noise in neural activity, these ‘‘pure’’ ideals of

interpretation (Fig. 1B and C) are practically unattainable, but they are

regularly approximated by the brain’s actual pattern of activity.

Let us simplify further and assume that each neuron in these population

codes is encoding some small feature about Ken and Kevin. Figure 2 shows

the same pattern of neural activity as in Fig. 1A, but with pretend inter-

pretations for what each neuron represents. Of course, individual neurons

probably encode far finer details than those depicted in Fig. 2. The term

microfeatures has been used to refer to the properties of the sensory input to

which individual neurons respond (Hinton, 1981). Often times, these indi-

vidual microfeatures are not easily deciphered, either in artificial neural

networks or in biological neural networks.

By comparing the actual neural pattern of microfeatures in Fig. 2 to

various ‘‘pure’’ population codes (such as those in Fig. 1B and C), we can

calculate the actual neural pattern’s Euclidian proximity to these ‘‘pure’’

population codes, normalize those proximity values so that they sum to 1.0,

92 Spivey and Dale
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Fig. 1. Idealized neural patterns that correspond to a graded brain state (A), and two

example ‘‘pure’’ states (B & C).
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and thus generate a rough probability distribution over possible interpreta-

tions of the person who is entering the pub. See Fig. 3. In this way, a neural

pattern can be seen as a probabilistic mental state, represented in the form of

its proximity to idealized pure (discretely interpretable) mental states, in-

stead of mere activity levels of individual neurons. In contrast, a supposed

pure mental state refers to an ideal precise pattern of neural activation

that—due to the complex and noisy dynamics of a brain with billions of

neurons and trillions of synapses—is never actually perfectly instantiated. In

this framework, a pure discrete (i.e., symbolic) mental state is an abstract

concept. It is a useful construct for theory development, but we argue that an

actual physical instantiation of a symbolic mental state never comes into

being. Rather, a fuzzy region of state-space broadly encompassing the

specific coordinates that correspond to a ‘‘pure’’ mental state (i.e., the basin

of attraction that surrounds an individual attractor point), is what gets

briefly visited by the trajectory defining the system’s state as a function of

time. The precise set of coordinates corresponding to that ‘‘pure’’ mental

state (i.e., the idealized identifiable population code) is never quite reached.

Nonetheless, the labels attached to these ‘‘pure’’ mental states are extremely

helpful in understanding the probabilistic mental states (cf. Barber, Clark, &

Anderson, 2003; Zemel, Dayan, & Pouget, 1998). Without the descriptive

Fig. 2. Idealized labels for each neuron in the graded brain state.
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conveniences of the labels along the abscissa in Fig. 3, a probabilistic mental

state would be essentially uninterpretable.

Our talk of ‘‘states’’ could imply that this specific pattern of activation is

stable for a certain period of time. The continuity of mind suggests, however,

that it would be continuously moving toward some interpretable population

codes and away from others. When the activations of these neural patterns

are tracked over time, they change gradually and nonlinearly. In Fig. 4, a

time course plot of probabilities of diVerent interpretable population codes

is illustrated. In the particular settling algorithm used here, it is guaranteed

that the probability value that starts out higher will be the eventual winner,

but this will not be true with all settling algorithms.

Although this scenario quaintly displays the multifarious character of

graded mental states changing over time, its simplicity reveals theoretical

flaws in the form of what might be called ‘‘edge eVects’’ in time. Figure 4

assumes that this process occurred in a contextual vacuum, involving no new

informative events while it was settling, and involved no action. It simply

gravitated to a stable corner (attractor basin) in its state-space. In real life,

no such event is free of some context, new information is constantly arriving,

and we are often producing continuous motor actions during perception.

Thus, by the time your brain state has approached a location in state-space

that is roughly consistent with only one pure population code, such as .8

Fig. 3. An idealized pattern of normalized proximities (treated as probabilities) to various

‘‘pure’’ states in the space of possible mental states.
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activation for ‘‘I see Ken,’’ changes in the environment and your own

behavior will alter the brain state such that it travels back into ‘‘unlabeled’’

regions in state-space, preparing for another near settling event where it gets

just close enough to another pure mental state to elicit appropriate action

and perhaps then veers oV once again. This more ecologically valid perspec-

tive of continuous change in natural behavior gives considerable bite to the

continuity of mind proposal: It means that the vast majority of the mind’s

time is spent in between identifiable mental states rather than in them.

It is perhaps tempting to think of achieving one briefly relatively stable

state for one temporal portion of sensory stimulation (such as that in the

later time period of Fig. 4) as producing a symbollike representation that

could somehow persist in some mental arena, and that when the system then

gravitates to other attractors in state-space this mental arena could somehow

accumulate accurate renditions of these symbollike representations that are

visited in the continuous state-space (but cf. Bollt et al., 2000). This perspec-

tive has much in common with the way a digital computer might shunt one

symbol into a working memory buVer and then shunt another and another,

thus giving the system several complete representational entities to work

with at the same time. In fact, there are hybrid theoretical frameworks

for cognition and language that implement this kind of temporally dynamic

accrual of activation for competing representations in a first stage, with

the winning symbolic representation then becoming part of a discrete

rule-driven computational system in a second stage (e.g., Anderson &

Fig. 4. An idealized evolution of these probabilistic activations (or normalized proximities)

depicting a dynamic graded mental state over the course a several hundred milliseconds.

AU:5
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Lebiere, 1998; Budiu & Anderson, 2004; Stevenson, 1994; see also Hummel,

2001; Marcus, 2001; Pinker & Ullman, 2002). Such frameworks hypothesize

a rather drastic schism between one part of the mind that functions in ways

that are consistent with the temporally continuous ebb and flow of neuronal

population codes and another part of the mind that functions in ways that

are substantially inconsistent with the neurophysiology.

This tempting notion of ‘‘accumulating symbols’’ after their attractors are

visited necessarily requires this problematic schism. Where else could those

accumulated symbols be stored but in a separate additional system? If one

accepts that this neural state-space can pose as a description of the activation

of every neuron in the brain, then such a description would have no room for

an additional separate system in the brain that could be a repository for such

an accumulation of symbols. The only sense in which these semistable

population codes—which may act something like fuzzy (nondiscrete) sym-

bols—could accumulate, in this account, is if they continue to reverberate

their coherent activation pattern while new population codes also become

coherently active. Note, however, that this still requires the coordinates

describing the state of the system in this space to move away from their

original location near that first attractor and now find a location that is

roughly equidistant from the previous attractor and the new one. Thus, if

one endeavors to describe the entire state of mind as a system with one state-

space (and not as collection of independent noninteractive systems with

separate state-spaces), then one cannot accumulate complete unchanged

symbols as the state of the system travels from one attractor to another.

Hence, dealing with the fast and complex temporal sequence of sensory

stimulation that occurs in normal everyday circumstances (although not

necessarily in the cognitive psychologist’s laboratory), and the spatiotempo-

rally contiguous movement in state-space that this instigates, forces the

behavior of the system to be best described by its continuous trajectory

(spending much of its time in intermediate unlabeled regions of state-space)

rather than by an enumerated list of the interpretable attractors it visits.

B. Continuity in Categorization?

To oVer a more substantive demonstration, we further exemplify this

continuity by considering a particular realm of research in cognitive psychol-

ogy. The study of categorization has been at the core of psychology, and

especially cognitive psychology, for many decades (cf. Harnad, 1987).

A continuity account, similar to that cartooned in Fig. 4, would naturally

predict that categorization tasks often show quite diVerent results from

speeded responses than from nonspeeded responses (e.g., Lamberts, 1995,

1998, 2000; Lin & Murphy, 1997; Nosofsky & Alfonso-Reese, 1999; see also

Brownell & Caramazza, 1978; Medin & Smith, 1981). This prediction derives
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from the idea that a speeded response forces an unsettled trajectory to select

among multiple nearby attractors in an unsystematic fashion (e.g., perhaps

stochastically). The results can allow one to infer partial activation of multiple

competing ‘‘interpretations’’ of the stimulus array. Unfortunately, as noted

by Lamberts (2000), it is still somewhat new and unusual for categorization

studies to give consideration to temporal dynamics. The bulk of the literature

over the past few decades has focused almost exclusively on the outcome of

categorization rather than the process. This traditionmay miss the fact that by

examining the continuous time course of online categorization, one can tease

apart various theoretical accounts that would never have been rigorously

tested by outcome-based oZine experimental measures.

For example, one theoretical account of the process of categorization,

which is generally consistent with Lamberts’ (2000) information accu-

mulation theory, can be idealistically demonstrated by a very simple

neural network architecture called normalized recurrence (McRae, Spivey-

Knowlton, & Tanenhaus, 1998; Spivey, Fitneva, Tabor, & Ajmani, 2002a;

Spivey & Tanenhaus, 1998; Tanenhaus, Spivey-Knowlton, & Hanna, 2000).

Normalized recurrence simulates the temporal dynamics of the competition

that emerges when multiple information sources weigh in on alternative

interpretations of a stimulus array. Like the probabilistic activations of

idealized population codes (see Fig. 3), the architecture simply generates a

probability distribution over possible categories in order to track their

evolution over time (usually corresponding to hundreds of milliseconds of

real-time cognitive processing).1 Figure 5 shows the diagram of a very simple

normalized recurrence architecture used to approximate the changing pat-

terns of activation during the categorization of diVerent animals into their

respective classes (fish, mammal, bird, and reptile). As the normalized recur-

rence competition algorithm works, these five feature vectors (framed cir-

cles) are normalized to sum to 1 and are then combined at the integration

layer (framed ovals), replacing its previous activation pattern. In this simu-

lation, there are no diVerential weights for the five feature vectors; they

simply sum together at the integration vector. The integration layer then

divides each of its nodes’ activation by the vector’s sum activation, thus

making the integration vector simply an average of the five feature vectors.

Cumulative feedback is then sent by adding to each feature node the product

of itself and its corresponding integration node. The next time step begins

1 The distributed population codes of the network are simplified as localist nodes for features

and classes, as in our first example. However, this competition algorithm does not address what

the localist representations are made of, nor how they developed. Despite these idealizations,

the architecture allows for rather sophisticated modeling of temporal processes of interpretation

and categorization.
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with the feature nodes normalizing themselves again (diving each node by

the vector’s sum), and the integration, normalization, and feedback take

place again. These four calculations are computed within each time step, and

the network continues until a criterion activation (often .95) is reached by an

integration node. The cyclic recurrent flow of activation between the inte-

gration vector and the feature vectors allows strong and selective biases

within certain feature vectors to coerce weak and uncertain biases in others,

until the system gradually settles into a stable state.

This localist attractor network (inspired significantly by McClelland

and Rumelhart’s (1981). Interactive Activation model, and Anderson,

Silverstein, Ritz, and Jones’s (1977) Brain-State-in-a-Box model; see also

Grainger & Jacobs, 1998; Zemel & Mozer, 2001) easily categorizes animals

that are typical exemplars of their taxonomic class, such as ‘‘toucan,’’

Fig. 5. Schematic diagram of a normalized recurrence simulation of the temporal dynamics

of categorization. The repeated node labels in some of the feature vectors (circles) are necessary

because each integration node (ovals) must have its own unique feature node. This allows the

feature vectors to function as probability distributions in their support for the appropriate

taxonomic class. For example, after the initial feature vector normalization step, the birth mode

vector for a live-birth animal would pass 1.0 activation to the Mammal node and 0 activation to

the other taxonomic class nodes, whereas for an egg-laying animal the birth mode vector would

send .333 activation to the Fish, Bird, and Reptile nodes, and 0 activation to the Mammal node.

AU:42
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‘‘goldfish,’’ and ‘‘cat’’ (see Fig. 6). However, with animals that are unusual

members of their class, the network undergoes a long, drawn-out competi-

tion due to the animal’s partial match with multiple taxonomic classes.2 The

gradual activation curves are similar to those produced by Lamberts’ (2000)

information accumulation model, and the overall typicality eVects coincide

with theories of graded category structure (e.g., Rosch & Mervis, 1975;

Smith, Shoben, & Rips, 1974). Note how, in Fig. 6, the simulations for

‘‘seal,’’ ‘‘whale,’’ ‘‘penguin,’’ ‘‘turtle’’ and ‘‘platypus’’ exhibit slow rises to

criterion for the correct classification, and even then their asymptotes are

substantially below 1.0. In the end, the model concludes that a whale is .6 a

mammal and .4 a fish. And, in fact, during its first few time steps of

processing, the model briefly conceives of a whale as slightly more a fish

than a mammal. A similar crossing of curves is seen with a turtle.

This simulation serves as a simple existence proof of how graded temporal

dynamics can be realized in a system of neural population codes. Admitted-

ly, even if the model’s predictions were to fit human data perfectly, we would

not contend that the mechanism matches the brain’s own. But could these

curves really be anything at all like what a human mind does when it

categorizes animals? During the early moments of settling on a categoriza-

tion for an animal, do people simultaneously partially consider multiple

categories? And do those partially active representations compete over time

in order for a cognitive trajectory to settle into eliciting a unique motor

output?

Using the method of eye tracking, Nederhouser and Spivey (2004) con-

ducted a pilot experiment that supports this speculation. Although, as

described, comparing speeded instinctive responses to slow contemplative

responses (e.g., Lin & Murphy, 1997) is a good start for measuring this kind

of time course question, a semicontinuous measure may be more revealing

by demonstrating accruing activation that supports diVerent interpretations.

Because eye movements occur about 2–3 times per and are largely unaVected

by deliberative strategies, they can provide a stream of multiple honest

‘‘proto-actions’’ over the course of the few seconds required to produce a

single overt verbal or manual action.

In the pilot study, the eye movements of 17 participants were recorded

while they categorized small plastic toy animals (about 200 � 300) into either of

2 In fact, in this rather small and oversimplified simulation, since the Principal Limbs and

Environment feature vectors for ‘‘bat’’ uniquely support the ‘‘bird’’ category, and only the Birth

Mode feature vector uniquely supports the mammal category, there actually winds up being

more overall support for incorrectly categorizing a bat as a bird (asymptote at .8) than as a

mammal (asymptote at .2). Expansion of the model to include more features, more classes, and

perhaps diVerential weights for the feature vectors, would be necessary to eradicate errors like

this.
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two bins. Participants were first shown a set of animals (half from one

taxonomic class, half from another), and then were presented each animal

one at a time. It was observed that animals that are atypical members of

their taxonomic classes, like turtles, penguins, seals, and whales, took longer

to categorize than more typical animals (cf. Glass & Meany, 1978; Rips,

Shoben, & Smith, 1973), and they also elicited quite a bit of vacillation in eye

movements between the two category bins. When participants categorized

Fig. 6. Activation curves from the simulation of the temporal dynamics of catregori-

zation. Feature nodes that received 1.0 activation at start, for the five input vectors, were

the following: CAT (legs, land, warm, air, live), SEAL (fins, water, warm, air, live), WHALE

(fins, water, warm, air, live), TOUCAN (wings, sky, warm, air, eggs), DUCK (wings–legs, water–

land–sky, warm, air, eggs), PENGUIN (wings, land–water, warm, air, eggs), LIZARD

(legs, land, cold, air, eggs), GOLDFISH (fins, water, cold, water, eggs), EEL (all limbs, water,

cold,water, eggs), TURTLE (legs,water, cold, air, eggs),WATERSNAKE (all limbs, land–water,

cold, air, eggs), and PLATYPUS (legs, land–water, warm, air, eggs).
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an atypical member of a category, they often fixated both bins multiple times

before settling on the correct bin and dropping the animal into it. Crucially,

when one looks again at the records of eye position over time, one can plot

fixation curves based on the proportion of fixations at each time slice (Fig. 6),

that resemble somewhat the activation curves from the network simulations

(Fig. 7). The curves in Fig. 6 show, for each 33-ms time slice, the proportion

of trials in which the subjects were fixating the correct category bin or the

incorrect category bin, following their first saccade away from the toy

animal that was placed in front of them. Note how, in the case of penguins,

seals, and whales, some subjects continued to fixate the incorrect bin for the

full 2 s shown; in some cases, they even placed the whale in the fish bin.

This comparison of pilot simulation and pilot data provides a glimpse into

the beginning stages of how we might better understand the temporal dynam-

ics of real-time categorization. The demonstration is intended to illustrate

how one can begin to visualize the fuzzy and graded representations that

change over time during categorization, both in a localist attractor network

and in a semicontinuous record of cognitive processing. And perhaps some of

the more static, formal approaches to concepts and categorization might have

trouble accommodating such evidence that, during a categorization event, the

mind spends so much of its time in graded, rather than discrete, mental states.

The important point to be made here is that these very specific locations in

state-space that seem to have easily labeled identities, these pure mental

states of ‘‘I see Ken’’ or ‘‘I see a mammal’’ can only be approximated by

the actual neural system for which this state-space is an abstracted mathe-

matical description. That is not to say those pure mental states are irrelevant

or nonexistent. They do exist, as possible locations in the neural system’s

state-space. The neural population codes get suYciently activated (i.e., the

system approaches close enough to a frequently visited and identifiable

attractor basin) to convince one phenomenologically that these pure mental

states have been perfectly instantiated. We would argue instead that they

have an infinitesimally small likelihood of ever happening.

With these simple examples to help guide our path, we now discuss

language and vision, and the rather impressive support each brings to this

perspective that cognition inherently consists of continuity.

III. Continuity in Language Processing

Here we consider language comprehension in real time as a particularly

evocative example of continuous sensory input producing continuous cogni-

tive processing—in spite of our clumsy metalinguistic introspection that we

perceive one word and then silence and then another word. We argue that
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this process, at its various levels of complexity, is driven by graded and

partially active information. We present these processes at increasing time

scales, beginning with speech perception (hundredths of seconds), word rec-

ognition (tenths of seconds), and concluding with sentence processing (sec-

onds). Despite these diVerent time scales, each exhibits the continuity of mind.

A. Speech Perception

Humans are wont to carve up their world into seemingly very discrete

categories. These categories are often imposed even within variation among

the things being categorized. Categorical perception describes the general

Fig. 7. Eye-fixation curves from Nederhouser and Spivey (2004). Animals that are atypical

examples of their taxonomic class elicited considerable vacillation in eye movements during the

early moments of categorization.
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tendency to cut a fine line along a gradient of variation; any inputs that fall

to the left or right of this line will be part of one or the other category.

Despite its name, ‘‘categorical’’ perception of speech sounds can be made

consistent with more temporally dynamic approaches to categorization (e.g.,

Anderson et al., 1977; Dailey, Cottrell, Padget, & Adolphs, 2002; Lamberts,

2000; Pisoni & Tash, 1974; Tuller, Case, Ding & Kelso, 1994; see also Cree,

McRae, & McNorgan, 1999). Indeed, the previous sections would suggest

that categorical speech perception does not just consist in graded patterns of

neural activation, but might exhibit such gradation in behavior when we use

continuous-time measures to investigate its finer temporal structure (rather

than simply observe explicit identification of a speech sound).

In pursuit of this, McMurray and Spivey (1999) tracked participants’ eye

movements while they performed the standard categorical identification

task. This task involves categorizing diVerent versions of ‘‘pah’’ and ‘‘bah’’

sounds, lying along the voice-onset time (VOT) dimension that distinguishes

them, by clicking /ba/ and /pa/ icons on a computer screen. Thus, in addition

to recording the participants’ explicit choice, there was also a semicontin-

uous record of how the eyes tended toward one or the other response icon

during categorization. With ‘‘pah’’ or ‘‘bah’’ sounds near their categorical

boundary, eye movements clearly exhibited conspicuous vacillation between

the /ba/ and /pa/ icons. Figure 8 shows two typical eye-fixation-over-time

plots during the speech categorization process for a clear ‘‘pah’’ stimulus

(panel A) and for a sound that was near the category boundary but was

nonetheless identified (by mouse click) as /pa/ 95% of the time (panel B). The

eye position records depicted here came only from trials in which the /pa/

icon was indeed clicked at the end of the trial. Despite the identification

outcome being identical in this subset of trials (all categorized as /pa/), the

pattern of eye movements reveals substantially more time spent fixating the /

ba/ icon (dashed area in panel B) when the speech stimulus was near the VOT

category boundary; thus indicating a clear eVect of perceptual gradations in

speech sounds.

In fact, these temporary phonemic ambiguities, as tested with VOT con-

tinua and eye movement records, exhibit their eVects not just in phoneme

identification tasks but also in spoken word recognition tasks (McMurray,

Tanenhaus, & Aslin, 2002; McMurray, Tanenhaus, Aslin, & Spivey, 2003).

For example, within-category variation of VOT does not aVect the final

outcome of recognizing bear versus pear; however, it does aVect the eye

movement records of participants looking at and clicking the corresponding

images on the computer screen (McMurray et al., 2002). A particularly

compelling way to visualize these eye movement data for the phoneme

identification task is to convert them into identification functions for early,

intermediate, and late periods of time during the identification process.
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Figure 9 shows an example of the proportion of time the eyes spent fixating

the /pa/ icon as a function of VOT. The later period of the identification

process (1201–1500 ms) reveals an eye movement identification function that

looks just like the typical discrete categorical identification function pro-

duced by button press responses. However, the earlier periods of the iden-

tification process (i.e., 0–300 ms, 301–600 ms, and even 601–900 ms) look

significantly more probabilistic and are graded in a way that reveals some

sensitivity to the continuous variation in VOT.

As done in the previous exploration of categorization, it can be illuminat-

ing to simulate the graded temporal dynamics of ‘‘categorical’’ speech per-

ception with a localist attractor network. This practice helps to visualize the

continuous changes taking place in the patterns of activation corresponding

to competing ‘‘graded category’’ states. Figure 10 illustrates the architecture

of a normalized recurrence simulation that integrates a speech vector (that

pits ‘‘bah’’-like sounds against ‘‘pah’’-like sounds) and a visual vector

(that compares fixation probabilities to a /ba/ icon, a /pa/ icon, and the

central fixation dot). The speech vector is given a pattern of input

corresponding to a speech sound somewhere along the VOT continuum.

For example, a rather unambiguous ‘‘pah’’ sound might get a starting

activation of (.1 0 .9) for those three nodes, whereas a borderline ‘‘bah’’

sound might get (.6 0 .4). The visual vector always starts at (.33 .33 .33),

treating each visual object as equally worthy of attracting an eye movement.

Fig. 8. Proportion of trials in which participants were fixating the /ba/ or the /pa/ icons,

time slice by time slice, after hearing an unmistakable ‘‘pah’’ from the VOT continuum (panel

A) and after hearing a speech sound near the category boundary (panel B). The hatched region

in the panel B indicates the degree to which within-category variation (in contrast to panel A)

aVected eye movements to the competitor icon /ba/, even for just those trials that were identified

as /pa/ (adapted from McMurray et al., 2003).
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As in the previous section, these two vectors simply sum at the integration

layer, which then normalizes itself and sends feedback to the feature vectors.

In this simulation, we can sample the proportion of fixations from the

visual vector, and thus watch the simulated eye movement patterns move

away from fixating the central dot and toward one or the other response

Fig. 9. When proportion of eye movements to /ba/ and /pa/ are treated like an identification

response across the stimuli of the VOT continuum, the later periods of time after presentation

(1201–1500 ms) exhibit the typical step-function of categorical perception, but the early periods

of time (301–600 ms) exhibit a substantially more graded transition between ‘‘ba’’-like states

and ‘‘pa’’-like states (adapted from McMurray & Spivey, 1999).

Fig. 10. A simple normalized recurrence localist attractor simulation of speech input from a

VOT continuum and visual input from a set of response icons. See text for details.
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icon. Figure 11 shows the activation curves over time for the /pa/ visual node

and the /ba/ visual node. Panel A plots these curves for a rather clear ‘‘pah’’

speech input (.2 0 .8), and panel B plots these curves for a ‘‘pah’’ speech

input that is near the category boundary (.4 0 .6). These activation curves

from the visual vector mimic the proportion of fixations at each time slice

(Fig. 8) in the results of McMurray and Spivey (1999); and McMurray et al.

(2002, 2003).

When this simulation is run for all 11 speech tokens along the VOT

continuum, it is possible to calculate the proportion of time the model

spends ‘‘fixating’’ the /pa/ icon versus the /ba/ icon, and thus plot a categori-

cal identification function. Crucially, this can be done for early periods of

time during the network’s settling process, as well as for intermediate and

late periods of time—just as was done in Fig. 9. The resulting graph is shown

in Fig. 12.

In both the normalized recurrence and human cases, the identification

function starts out rather unbiased and gradually approaches the classic

step-function profile by continuously increasing one-half of the curve and

decreasing the other half of the curve over time. Thus, if the identification

function is to be interpreted as a kind of signature of the internal pattern of

activation favoring the perception of ‘‘bah’’ or ‘‘pah,’’ then this signature at

those early moments in time looks decidedly more continuous than the

legendary step function that motivated the aphorism, ‘‘speech is special’’

(cf. Liberman, 1982).

Fig. 11. Activation over time of the /ba/ and /pa/ visual nodes after an unmistakable ‘‘pah’’

(panel A) and after a speech sound near the category boundary (panel B). The hatched region in

panel B shows portion of /ba/ node activation over and above that in panel A. (Compare to

Fig. 8.)
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B. Spoken Word Recognition

Even those readers wary of the continuity of mind must admit that the

speech signal for word recognition is continuous. Individual phonemes do

not occur discretely, as categorical perception described might suggest;

instead, individual sounds, so to speak, smoothly blend into each other in

natural speech. Speech is indeed quite exemplary of Gibson’s continuous

‘‘flowing array of stimulus energy.’’

In a classic set of experiments, Marslen-Wilson and colleagues demon-

strated that, to a first approximation, complete recognition of a word occurs

shortly after the auditory input uniquely specifies a lexical candidate (for

review, seeMarslen-Wilson, 1987). Forwords ofmany syllables, this canoccur

prior to the end of the word. For example, the word elephant would be

recognized shortly after the sound /f/. Prior to that, the auditory input would

be consistent with the beginnings of several words, including elephant, elegant,

eloquent and elevator. Thus, recognition of a spoken word is strongly infl-

uenced by the words to which it is phonetically similar, especially those words

that share initial phonemes. Marslen-Wilson referred to the set of lexical

candidates that is activated in the same phonetic environment as a ‘‘cohort.’’

Evidence from several experimental paradigms indicates that these candi-

dates are partially activated as a word is being processed (not unlike the

Fig. 12. Relative proportion of the /ba/ and /pa/ visual node activations (excluding ‘‘center’’

node) across diVerent stimulus gradations between ‘‘ba’’ and ‘‘pa’’ at diVerent cycles of

competition in normalized recurrence.
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partial activations over time for the mental states in Fig. 4). For example,

cross-modal lexical priming experiments demonstrate that semantic infor-

mation associated with cohort members is temporarily activated as a word

unfolds (Zwitserlood, 1989). The prior context of the utterance and

subsequent input provide evidence that is used to evaluate the competing

alternatives. While current models diVer in how they account for these data,

nearly all models incorporate the idea that the time it takes to recognize a

word depends on a set of potential lexical candidates (see Cutler, 1995, for

a review).

Providing concrete evidence for the activation of multiple alternative

lexical items during recognition of a spoken word, Spivey-Knowlton, Sedivy,

Eberhard, and Tanenhaus (1994) reported cohort eVects in eye movement

patterns by having subjects follow instructions to manipulate real objects.

Participants sat in front of a table containing a central fixation cross and

various objects around it (e.g., a fork, a mug, a candle). In some trials,

objects whose names had similar initial phonemes were present on the table,

available for manipulation (e.g., a bag of candy and a candle). For this

‘‘cohort competitor present’’ condition, Fig. 13 shows the proportion of

trials, at each time slice, in which the participants’ eyes were fixating each

of the various objects. The probability of looking at the cohort object, (e.g.,

the candy, when instructed to ‘‘Pick up the candle’’), rose just as quickly as

Fig. 13. Proportion of fixations of various objects across time as the target word unfolds

(e.g., about 300 ms for the word candle). Note the conspicuous rise of eye movements to the

cohort competitor object (filled triangles; from Spivey-Knowlton & Allopenna, 1997).
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the probability of looking at the target object, for a period of about 200 ms

around the tail end of the spoken word. And even when the two curves

diverge, the proportion of fixations of the cohort object still persists for a few

hundred milliseconds. This salience of the cohort object conspicuously at-

tracting eye movements is indicative of the competing lexical representation

being partially active during, and perhaps shortly after, delivery of the

spoken word.

Headband-mounted eye-tracking studies like this have demons-

trated this real-time lexical competition using computer-displayed objects

(Allopenna, Magnuson, & Tanenhaus, 1998), using artificial lexicons

(Magnuson, Tanenhaus, Aslin, & Dahan, 2003), with young children

(Fernald, Swingley, & Pinto, 2001), and even across two languages in

bilingual participants (Marian & Spivey, 2003; Spivey & Marian, 1999).

Marslen-Wilson’s (1987) cohort theory naturally predicts findings like

these, and McClelland and Elman’s (1986) TRACE model can quantitative-

ly simulate them. In the TRACE model of word recognition, activation is

passed forward and backward between a layer of phonetic feature nodes, a

layer of phoneme nodes, and a layer of word nodes. As the network receives

phonetic feature activation corresponding to early speech information, it

gradually settles toward a state of exhibiting activation for only the words

that are consistent with the current speech input. In this way, TRACE can

explicitly implement the cohort eVect described in the Marslen-Wilson’s

cohort theory. In fact, by integrating TRACE with the normalized recur-

rence architecture previously described, to impose the visual constraints

on which objects and lexical items accrue significant activation, quite accu-

rate predictions about eye movement dynamics can be made (Spivey, in

preparation).

The TRACE network also makes a prediction that diverges from

Marslen-Wilson’s cohort theory. Since TRACE has only positive connec-

tions between layers (and only inhibitory connections within layers), it

does not prevent, and will in fact induce, the activation of lexical items

that rhyme with the word being spoken. Therefore, TRACE predicts that

when instructed to ‘‘Pick up the candle,’’ a person should conspicuously

fixate a handle in the display, whereas the standard version of the cohort

theory would not predict this. Indeed, TRACE’s prediction holds true.

Listeners will briefly look at an object whose name rhymes with the spoken

word more so than unrelated control objects (Allopenna et al., 1998).

Allopenna et al., showed that the activations of the lexical nodes in TRACE

(once scaled by an exponential and normalized) closely mimic the probabili-

ty-of-fixation functions from these eye-tracking experiments (compare

Figs. 13 & 14).
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C. Sentence Processing

In the 1970s, a ‘‘clausal processing theory’’ emerged in psycholinguistics,

arguing that most of the syntactic and semantic processing of a sentence

took place at the ends of its clauses rather than continuously throughout the

sentence (e.g., Bever & Hurtig, 1975). The impetus for this theory largely

derived from two sources. One was to maintain some level of consonance

between psycholinguistic investigation and linguistic theories that incor-

porated a unique syntactic level of processing. The second, interestingly,

was largely induced by Marslen-Wilson’s famous shadowing experiments

(Marslen-Wilson, 1973). In these experiments, participants verbally followed

a spoken passage played to them and tried to repeat it out loud as quickly as

possible. This close speech-shadowing task revealed that mistakes made by

participants were largely grammatically and semantically appropriate

amidst their previous and subsequent repetition. This suggested that syntax

and semantics are in fact being processed together continuously during

sentence processing. Clausal processing theory aimed to counter these results

and bring psycholinguistics closer to contemporary syntactic theories in

linguistics.

Subsequent theories of sentence processing often urged the continuous

nature of syntactic and semantic computations on linguistic input, but

Fig. 14. Activations of the lexical nodes in McClelland and Elman’s (1986) TRACE model

of speech processing, scaled by an exponent and normalized (from Spivey-Knowlton &

Allopenna, 1997). (Compare to Fig. 13.)
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assailed the interactive aspect of Marslen-Wilson’s (1973; Tyler & Marslen-

Wilson, 1977) framework. Frazier and Fodor (1978) proposed a set of

syntactic structuring heuristics for real-time sentence processing that oVered

an account of certain errors and hence misunderstandings in parsing a

sentence. Frazier and colleagues argued that a syntactic parsing module in

the mind automatically attaches each new incoming word in such a way that

minimizes the number of branches in a syntactic tree structure. With sen-

tences like that in (1), taken from Bever (1970), which contain temporary

syntactic ambiguities, the particular tree-structuring format that Frazier

employed posited fewer branching nodes if the verb ‘‘raced’’ was integrated

as part of the sentence’s main verb rather than as a relative clause describing

‘‘horse.’’ This ‘‘minimal attachment’’ hypothesis predicted that a reader or

listener will build the syntactic structure consistent with the horse doing the

racing (rather than being raced by someone), and this would essentially lead

comprehension ‘‘down a garden path’’ that will not work with the

subsequent words. The result is that by the end of the sentence, the verb fell

has nowhere to attach and thus cannot easily be grammatically integrated

into the sentence.

(1) The horse raced past the barn fell.

Throughout the 1980s, Frazier and colleagues recorded eye movements

during reading tasks and concluded that sentence processing did not involve

real-time interaction between syntax and meaning because semantic and

discourse context did not appear to prevent the all-important syntactic

heuristics from generating garden path eVects (e.g., Ferreira & Clifton,

1986; Rayner, Carlson, & Frazier, 1983). In addition, in opposition to

clausal processing theory, they argued that sentence processing involved

continuous flow of information (or at least word-by-word incremental

flow) because the eVects of the syntactic heuristics are detectable in the eye

movement data (as increases in reading times) the moment the reader fixates

the critical word disambiguating the sentence, regardless of where any

clauses begin or end (Frazier, 1998; Frazier & Clifton, 1989; Frazier &

Rayner, 1982). This work constituted more than a decade of research

characterizing comprehension as an incremental word-by-word (not

clause-by-clause) process in which syntax alone was processed in an early

stage of the system, and then semantics and other contextual constraints

were consulted in a later stage of the system, in the event of anomalies like

garden path eVects.

There remains ongoing debate about the interactive nature of sentence

processing. To illustrate, consider sentence (2) (from Tanenhaus & Trueswell,

1995). It has exactly the same structure as (1) but does not induce a garden

path eVect.

(2) The land mine buried in the sand exploded.
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If syntax were sovereign in this situation, it should be equally diYcult to

process sentences (1) and (2). The semantic constraints imposed by the lexical

items in (2), ‘‘landmine’’ and ‘‘buried,’’ seem to steer the reader away from

the garden path, implicating a more interactive perspective on sentence

processing. MacDonald, Pearlmutter, and Seidenberg (1994) argued that

examples like these illustrate that structural biases during parsing emerge

out of the interaction of both syntactic and semantic constraints. They

report extensive experimental evidence in support of this perspective.

The theoretical upshot from MacDonald et al. was to propose that mul-

tiple constraints are marshaled in the service of sentence processing. These

constraints (lexical, semantic, pragmatic) act simultaneously to influence

online interpretation of sentences. Indeed, when these various factors

are controlled for their relative contribution, the accumulating evidence

overwhelmingly supports an interactive perspective on sentence processing

(e.g., Altmann, Garnham & Dennis, 1992; Altmann & Steedman, 1988;

Farrar & Kawamoto, 1993; Pearlmutter & MacDonald, 1995; McRae

et al., 1998; Spivey & Tanenhuas, 1998; Spivey-Knowlton & Sedivy, 1995;

Trueswell & Kim, 1998; Trueswell, Tanenhaus, & Garnsey, 1994;

van Berkum, Brown, & Hagoort, 1999).3

One way of demonstrating the power of these contextual eVects is through

the semicontinuous record of eye movements during spoken sentence com-

prehension. For example, when presented with a real 3-D display containing

an apple on a towel, another towel, and an empty box, and then instructed to

‘‘Put the apple on the towel in the box,’’ participants often look briefly at the

irrelevant lone towel near the end of the spoken instruction before returning

their gaze to the apple, grasping it, and then placing it inside the box (Spivey,

Tanenhaus, Eberhard, & Sedivy, 2002b; Tanenhaus, Spivey-Knowlton,

Eberhard, & Sedivy, 1995). (With unambiguous control sentences, such as

‘‘Put the apple that’s on the towel in the box,’’ they almost never look at the

irrelevant lone towel). In this case, the syntax is ambiguous as to whether the

prepositional phrase on the towel is attached to the verb put (as a movement

destination) or to the noun apple (as a modifier). Given the actions aVorded

by the display, the latter syntactic structure is the correct one. However,

people tend to have a bias toward interpreting an ambiguous prepositional

phrase as attached to the verb (Rayner, Carlson, & Frazier, 1983), at least

AU:8

AU:9

AU:7

3 In fact, at this point in the literature, the debate has largely shifted to determining how the

syntactic alternatives of an ambiguity, supported by their various constraints, are adjudicated;

with some researchers advocating a temporally dynamic competition process (e.g., McRae et al.,

1998; Spivey & Tanenhaus, 1998; Spivey, Fitneva, Tabor & Ajmani, 2002a; Stevenson, 1994;

Tabor & Tanenhaus, 1999; Tanenhaus et al., 2002) and others describing an immediate winner-

take-all framework (e.g., Jurafsky, 1996; van Gompel, Pickering, & Traxler, 2001).
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when it is an action verb like put (cf. Spivey-Knowlton & Sedivy, 1995).

Thus, the brief fixation of the irrelevant lone towel indicates a temporary

partially activated incorrect parse of the sentence. To demonstrate the

influence of visual context on this syntactic ambiguity resolution process,

the display was slightly altered to include a second apple (resting on a

napkin). In this case, the visual copresence (in Herb Clark’s, 1992, words)

of the two potential referents for the phrase the apple should encourage

the listener to interpret the ambiguous prepositional phrase on the towel as

a modifier (in order to determine which apple is being referred to) rather

than as a movement destination (cf. Altmann & Steedman, 1988; Crain

& Steedman, 1985; Spivey & Tanenhaus, 1998). And, indeed, with this

display, participants rarely fixated the irrelevant lone towel, indicating that

visual context had exerted an immediate influence on the incremental syn-

tactic parsing of the spoken sentence (Spivey et al., 2002b; Tanenhaus et al.,

1995; see also Knoeferle, Crocker, Scheepers, & Pickering, 2003).

The current state of aVairs in the field of sentence processing is at a

consensus with regard to the continuity of information flow and has been

gradually approaching consensus with regard to the rapid integration of

syntax, semantics, and pragmatic context. Just as the processing of speech

sounds, at the scale of tens of milliseconds, appears to be characterized by

multiple partially active phonemic representations competing over time

(McMurray et al., 2002, 2003), and the comprehension of spoken words,

at the scale of hundreds of milliseconds, appears to be characterized

by multiple partially active lexical representations competing over time

(Allopenna et al., 1998; Marslen-Wilson, 1987; McClelland & Elman,

1986), so does the resolution of syntactic ambiguity, at the scale of seconds,

appear to be characterized by multiple partially active syntactic representa-

tions competing over time (MacDonald et al., 1994; Spivey & Tanenhaus,

1998; Stevenson, 1994; Tabor & Tanenhaus, 1999).

IV. Continuity in Visual Perception

As speech enters the sensory system through time, it is perhaps an obvious

case where continuous temporal dynamics would be prominent in the result-

ing perceptual-cognitive processing. Visual input, however, is often delivered

to the sensory system in an instantaneous fashion (in the laboratory, at

least). Does the internal processing of an instantaneously presented visual

stimulus exhibit any interesting temporal dynamics? In this section, we

describe a number of findings and demonstrations of continuous accrual of

activation during visual processing.
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A. Object and Face Recognition

As vision is a modality in which we share much in common with nonhuman

primates, it has been studied in-depth with neurophysiologically invasive real-

time measures that, indeed, quite richly illustrate the temporal dynamics of

the resulting perceptual-cognitive processing. Vision research is replete with

examples of temporal continuity in real-time perception. The gradual settling

(or pattern completion) of a neuronal population code, over the course of

hundreds of milliseconds, is a common way to think about how the visual

system recognizes objects and faces. Compelling visualizations of the contin-

uous manner in which sensory input gradually produces a percept can easily

be found in visual neuroscience. For example, Rolls and Tovee (1995) re-

corded from multiple neurons in the inferotemporal cortex of the macaque

monkey and found that it takes a few hundred milliseconds for the right

population of cells to achieve their appropriate firing rates for fully identifying

a fixated object or face. The cumulative information (in bits) provided by an

inferotemporal neuron in the service of recognizing a face or object accrues

continuously (though nonlinearly) over the course of about 350 ms (see

Fig. 15). About 80 ms after the presentation of the visual stimulus, these cells

begin firing, and during the first 70 ms of firing, about 50% of the total

information to be encoded is already accumulated. Thus, very quickly,

the inferotemporal network is able to project itself into the correct ‘‘neigh-

borhood’’ in its state-space. (This allows some coarse gistlike visual discrimi-

nations to actually be made with 100 ms or less of stimulus presentation

time; e.g., Potter, 1976, 1993; Van Rullen & Thorpe, 2001.) However, over

the next 200 ms or so, the process of object or face recognition is still

in progress, during which the remaining 50% of the information to be

represented by the distributed population code is gradually accumulated.

Perrett, Oram, and Ashbridge (1998) report further patterns of gradual

accumulation of neuronal evidence for face recognition. When an object or

face is partly rotated away from a canonical or frontal view, recognition or

matching will generally take longer as a function of how far it is rotated (e.g.,

Cooper & Shepard, 1973; Jolicoeur, 1985; Shepard & Metzler, 1971; see also

Georgopoulos, Lurito, Petrides, Schwartz, & Massey, 1989). Perrett et al.

(1998) describe recordings from cells in the monkey temporal cortex during

viewing of frontal, three-fourth profile, profile, and one-fourth profile sche-

matic faces. When the accumulated action potentials are plotted over time,

these curves rise at diVerent rates as a function of how canonical the face

orientation is. Figure 16 depicts the continuous nonlinear rise in accumu-

lated neuronal spikes over the course of several hundred milliseconds as

recognition takes place. As these curves plot accumulated spikes, rather than
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Fig. 15. Average cumulative information accrued over milliseconds by inferotemporal cells

representing objects and faces (adapted from Rolls & Tovee, 1995).

Fig. 16. The accumulation over time of neuronal spikes (over and above the baseline spike

rate) from cells responding to faces at various rotations around the vertical axis (adapted from

Perrett et al., 1998).
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information-theoretic bits per neuron, they asymptote somewhat later in

time than the curve in Fig. 15. Note again how these curves reach their half

height relatively early on, yet still spend several hundred milliseconds grad-

ually approaching their respective asymptotes (except for the back-of-head

view, which asymptotes rather low within a few hundred milliseconds).

A few (or even several) hundred milliseconds for a population code to be

‘‘in transit’’ on the way toward achieving its potentially stable asymptotic

state might initially seem like a rather small amount of time to get excited

about. Are these transition periods perhaps just interesting curiosities, while

the important observation is that a stable state is eventually reached, and is it

that on which discrete mental computations might be performed? We think

not. It is our hypothesis that in more complex visual (as well as auditory,

somatosensory, etc.) environments, the proportion of time spent in these

unstable regions of state-space—that is, in the process of traveling toward an

attractor basin, but not in one yet—is actually much greater than the

proportion of time spent in relatively stable regions of state-space.

This gradual accrual of the information comprising a population code

(Figs. 15 and 16) has powerful consequences for how we conceptualize what

the brain is doing when we go about our business of naturally perceiving the

world around us. Consider how your eyes move around a complex scene like

the one in front of you right now. Your eyes rest, with the two foveas fixating

a particular location in the visual field, for about 300–400 ms on average (cf.

Rayner, 1998). They then make a fast, ballistic, jump (lasting a few dozen

milliseconds or so) away from that location to fixate another location in the

visual field. After resting there for another 300–400 ms, they jump yet again

to another location. Each new fixation brings a new word, object, or object

part into the high-resolution view of your foveas for little more than one-

third of a second. Now, if it takes almost half a second for the appropriate

population code to get fully settled in recognizing a fixated object (Figs. 15 &

16), but your eyes normally move to a new object every one-third of a

second, how can the brain possibly achieve a genuinely stable asymptotic

state (or temporally discrete representation) for any object recognition

event?

B. Visual Search

The same kind of gradual accumulation of perceptual evidence can be

observed when multiple objects are competing for attention during visual

search. The field of visual search has generally been driven by two opposing

treatments of attention. The serial-processing perspective holds that the

observer allocates attentional resources wholly and discretely to individual

objects, one at a time (e.g., Treisman, 1988; Treisman & Gelade, 1980). The
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parallel-processing perspective holds that attention is best characterized

as comprised of partially active representations of objects simultaneously

competing for probabilistic mappings onto motor output (e.g., Desimone &

Duncan, 1995; Reynolds & Desimone, 2001).

In a conjunction search task, the target object is defined by a conjunction

of features, and reaction time increases linearly with the number of distrac-

tors, often in the range of 15–25 ms per item (Duncan & Humphreys, 1989;

Treisman & Gelade, 1980; Wolfe, 1994). These linearly increasing reaction

times as a function of set size were originally interpreted as evidence for serial

processing of the objects in the display and contrasted with the near flat

function of reaction time by set size observed with feature search displays,

where a single feature is suYcient to identify the target object. It was argued

that the early stages of the visual system process individual features indepen-

dently and in parallel (Livingstone & Hubel, 1988), allowing the target object

to ‘‘pop out’’ in the display if it is discriminable by a single feature, but

requiring application of an attentional window to the individual objects, one

at a time, if the target object is discriminable only by a conjunction of

features (Treisman & Gelade, 1980).

However, several studies have discovered particular conjunctions of fea-

tures that do not produce steeply sloped reaction-time functions by set size

(McLeod, Driver & Crisp, 1988; Nakayama & Silverman, 1986; Theeuwes &

Kooi, 1994). Moreover, it has been argued that steeply sloped reaction-time

functions may not reflect serial processing of objects in the display, but

rather noise in the human visual system (Eckstein, 1998; Palmer, Verghese,

& Pavel, 2000; see also McElree & Carrasco, 1999). Overall, a wide range of

studies have suggested that the distinction between putatively ‘‘serial’’ and

‘‘parallel’’ search functions is continuous rather than discrete and should

be considered extremes on a continuum of search diYculty (Duncan &

Humphreys, 1989; Nakayama & Joseph, 1998; Olds, Cowan, & Joliceur,

2000; Wolfe, 1998; see also Spivey, Tyler, Eberhard, & Tanenhaus, 2001).

Desimone and Duncan (1995; see also Reynolds & Desimone, 2001)

describe a theory of ‘‘biased competition’’ in which multiple representations

of objects are simultaneously partially active and compete for the privilege of

driving motor output (e.g., pressing the ‘‘target present’’ button, reaching to

grasp the attended object, or turning to shoot the computer-generated avatar

of your opponent in a video game). Experimenter instructions, goal-oriented

plans, and contextual constraints also provide some of the ‘‘bias’’ for this

competition process.

The following normalized recurrence simulation serves as a kind of

abstract implementation of a ‘‘biased competition’’ account of visual

search (see Humphreys & Müller, 1993; Phaf, Van der Heijden, & Hudson,

1990, for somewhat similar models). In this simulation, one feature vector

AU:10
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represents the likelihood of each object being the target based solely on it

exhibiting the target property of redness, and the other feature vector repre-

sents the likelihood of each object being the target based solely on it

exhibiting the target property of verticalness. The integration vector serves

as a measure of each object’s overall likelihood of being the target. Figure 17

shows a schematic diagram of this normalized recurrence network with input

values corresponding to a target-present conjunction search for a red vertical

bar with a set size of seven (i.e., one red vertical, three red nonverticals, and

three nonred verticals).

Within each cycle of competition, the two feature vectors are normalized,

then averaged at the integration layer,4 and the integration vector then sends

pointwise multiplicative cumulative feedback to those feature vectors. As

cycles of competition continue, the integration node corresponding to the

target object (exhibiting both redness and verticalness) increases in activa-

tion while the other nodes decrease in activation. Competition continues

until an integration node exceeds a .95 activation criterion.

This normalized recurrence competition algorithm produces a nearly

perfectly linear slope of settling time as a function of set size; r2 ¼ .9955

(see Fig. 18). This basic result out of such a simple localist attractor network

is noteworthy. One of the field’s landmark findings that has traditionally

been taken as evidence for a serial fixed-duration template-matching of each

object one at a time, that is linear search functions, is exactly mimicked by a

parallel competitive architecture where the only ‘‘capacity limitations’’ are

that its representations share a probability density function.

Initially, it is not necessarily obvious why normalized recurrence should

produce this linear increase in search time as a function of set size. As set size

increases linearly, the initial activation of the target object’s integration node

decreases nonlinearly. In addition, as competition takes place within a given

trial, that target integration node’s activation value increases nonlinearly

over time. In fact, this nonlinear increase over time exactly compensates for

the nonlinear diVerences in starting activation across set size. For example,

as shown in Fig. 19, competition increases the target integration node’s

activation with an asymmetric sigmoid function over time. Thus, although

the initial activation values vary nonlinearly with set size (i.e., .415, .225,

.155, .118, .095, for set sizes 4, 8, 12, 16, and 20), their nonlinear rise over

AU:11

4 The Bayesian approach to this feedforward integration process would be to multiply these

probabilities and then normalize them, but with binary feature vectors that would of course

eliminate any temporal dynamics, as the target integration node would achieve 1.0 activation on

the first time step.
5 Moreover, it is clearly not simply operating within a linear portion of an otherwise

nonlinear function. All the way to a set size of 300, in steps of 10, the slope function produced

by normalized recurrence is perfectly linear, r2 ¼ 1:0:
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Fig. 17. Schematic diagram of a normalized recurrence simulation of visual conjunction

search.

Fig. 18. Settling times for normalized recurrence during a conjunction search with diVerent

set sizes.
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time causes them to achieve a criterion of activation at approximately linear

intervals in time (Spivey-Knowlton, 1996). In a sense, two nonlinearities

make a linearity.

A key observation from this little simulation is the fact that the represen-

tations of the various objects are all processed simultaneously, their activa-

tions updated in tandem. Despite this parallel processing of all object

representations, the network produces linearly increasing settling times, as

a function of set size, which were previously interpreted as evidence for serial

processing. Thus, the simulation stands as an existence proof that linear

functions can come out of a system in which multiple partially active

representations are competing simultaneously, and an object’s ‘‘targethood’’

gradually emerges over the course of hundreds of milliseconds during visual

search.

C. Perceptual Decisions

Our final example of continuous temporal dynamics in visual processing

comes from work by Gold and Shadlen (2000) examining decision processes

in the frontal eye field (FEF) of the macaque. A common task in visual

psychophysics involves presenting a display of quasi-randomly moving dots.

As the experimenter increases the proportion of dots that move in a roughly

Fig. 19. In normalized recurrence, the winning node’s activation rises with a sigmoid

function, but this curve shifts linearly in time as set size increases.

AU:12
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consistent direction, the perception of a coherent direction of flow amidst the

dots becomes more apparent (Britten, Shadlen, Newsome, & Movshon 1992).

Gold and Shadlen presented such displays foveally to monkeys and trained

them to indicate the perceived direction of dot flow, upon oVset of the

stimulus, by making an eye movement to one peripheral location or an

opposite one. Then they found a region of FEF in which electrical micro-

stimulation produced an involuntary saccade that was perpendicular to the

two voluntary response saccades. On some of the direction-of-flow judgment

trials, this region of FEF was microstimulated immediately after the moving

dot display disappeared, that is, exactly when the monkey was supposed to

produce a voluntary eye movement that would indicate his response regarding

the perceived direction of flow of the dots.

Perhaps not surprisingly, the evoked involuntary saccade was executed

first, and a corrective saccade typically redirected the eyes to the voluntarily

chosen response location. However, the evoked saccade was not bereft of

influence from the burgeoning perceptual decision. In fact, when the per-

centage of coherent motion was greater and (more importantly, for our

argument) when viewing time was longer, more perceptual evidence appar-

ently accrued to induce greater deviation of that initial involuntary saccade

in the direction of the voluntary response.

Essentially, by incrementally increasing viewing time, the experimenters

could observe the gradual increase in ‘‘strength’’ or ‘‘confidence’’ of the

perceptual decision over time, as indicated by the degree to which that

voluntary decision ‘‘leaked into’’ the execution of the FEF-microstimulated

evoked saccade. Thus, the population of cells that—once some of them were

microstimulated—produced the evoked saccade were already somewhere in

the process of settling on a pattern of activation that would produce the

voluntary response saccade. If the microstimulation took place early on in

this decision process, rather little eVect of the voluntary response would be

apparent in the evoked saccade, but if the miscrostimulation took place later

on in the decision process, a significant amount of the voluntary response

would be apparent in the evoked saccade. These results suggest that decision

processes themselves may be coextensive with the gradual settling of partial-

ly active and competing neural representations in motor areas of cortex

(Gold & Shadlen, 2001; Schall, 2000; see also Georgopoulos, 1995).

Overall, this brief selection of observations in visual processing is consis-

tent with a general view of perception, cognition, and action in which

partially active mental representations compete over time until one (or in

some cases an amalgam of more than one) wins the privilege to execute its

associated motor output. Whether the visual system is recognizing a face,

searching among a cluttered array for a ‘‘target’’ object, or deciding on what

oculomotor signal to send to the eye muscles, the population code

AU:13
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corresponding to the representation that will get to drive behavior (or even

just constitute an internal monolog) spends a considerable amount of

time approaching that status, and (in natural complex real-time interactive

environments) rather little time enjoying it.

V. Continuity in Complexity

We have so far argued that our cognitive system consists of partially active

and gradually emerging information, the ‘‘states’’ of which are more or less

interpretable regions of the state-space in which a system lives. As described

in many previous studies, this continuity ‘‘resides’’ in the neural substrate of

the brain—vast arrays of networks blending into each other, sometimes

moderately functionally specific (Zeki, 1993), and other times highly redun-

dant across regions (Haxby et al., 2001). We would argue that continuity is

itself a consequence of this inevitable complexity of the brain. Patterns of

activity emerge gradually through local interaction of individual neurons,

themselves composing more global connectivity. There is, therefore, organi-

zation within the system at varying time scales, from local neural influences

to larger and larger organization, within regions and across them. Several

theorists in the past 20 years have suggested that such a state of aVairs

admits of particular dynamics, regardless of the specific subject matter. For

example, dynamic analyses of earthquakes (Bak & Tang, 1989), radioactive

decay (Prestwich, Kenneth, & Pepper, 1986), and even traYc flow (Choi &

Lee, 1995) suggest that complex systems of this kind exhibit certain global

patterns (for an excellent review of this and related phenomena, see Ward,

2002).

If human cognition is indeed a complex dynamic system of the kind we are

arguing, then similar patterns should be observable in this domain. In this

section, we oVer a review showing that behavior related to the previous

sections, language and vision, also exhibits dynamic properties of complex

systems.

A. Pink Noise

Among these properties, pink noise has perhaps invited the most investiga-

tion and speculation (Ward, 2002). Indeed, it is its apparent violation of a

basic intuition about experimental procedures and inferential statistics that

has likely engendered such interest (Gilden, 2001). According to this tradi-

tional intuition, pure experimental error should generate a random noise

signal. When such a noisy signal is subjected to a fast-Fourier transform, it

exhibits equal energy across its component frequencies (Press, Flannery,AU:14
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Teukolsky, & Vetterling, 1992). Pink noise, instead, is error or noise that is

correlated with the frequency components contributing to it. The most

common kind of model to describe correlated noise is that of colored noise:

PowerðfreqÞ / 1

freq�

Pink noise is usually referred to as a pattern of noise whose power

spectrum has a value of approximately 1 for �, also known as 1/f noise

(see Fig. 20). Vast ranges of natural phenomena exhibit this kind of

noise. Another form of colored noise, brown noise, is often illustrated using

Brownian motion and is generated by a random walk process (i.e., a small

random process that cumulatively adds or subtracts from a moving scalar

time series). Brown noise has a power spectrum 1/f2. Pink noise is the most

thoroughly investigated in psychological data and generally considered more

interesting in other physical systems as well.

Gilden, Thornton, and Mallon (1995) sparked the recent spate of interest

in pink noise in human brain and behavior. By the time these authors

published their well-known results, others had already investigated pink

noise in other areas (e.g., Voss and Clarke, 1975, oVer a now famous

Fig. 20. Top row: the power spectrum (left panel) for pink noise (right panel) is correlated

negatively with frequency. Bottom row: white noise has a power spectrum that is not correlated

with frequency.
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demonstration in musical structure and speech). Gilden et al.’s results dem-

onstrate that certain human behaviors also exhibit this general property of

complex systems. Their experiments primarily demonstrate that judgments,

such as of time or space, have error in time that reveals a pink power

spectrum. However, in an experiment involving reaction time to a simple

discriminative stimulus, no such pink noise was found. The authors specu-

late that 1/f noise emerges as a consequence of mental judgments. Clayton

and Frey (1997) soon after demonstrated that pink noise can emerge in

reaction time measurements in experiments with a memory load. Three

diVerent response-time tasks were presented to subjects. In the easiest,

subjects responded to a stimulus immediately. In another task of intermedi-

ate diYculty, they responded to the sameness of two subsequent stimuli; in

the most diYcult, subjects pressed a key if the stimulus was the same as

presented two trials back in the experiment. All conditions produced colored

noise in time series analyses of the reaction times, indicating that reaction

times also display pink noise. In fact, the authors demonstrated that the

harder the task, the more whitened the power spectrum becomes.

In an extensive series of experiments, Gilden (1997) demonstrated pink

noise in a wide variety of decision tasks. In reaction times for both mental

rotation and lexical decision, pink noise was observed in the time course of

fluctuations from the mean. More recently, further evidence has surfaced

that the visual system also reveals these patterns. Aks and Sprott (2003)

revealed that perspective shifts in Necker cube interpretation exhibit pink

noise eVects. In an earlier paper, Aks, Zelinsky, and Sprott (2002) demon-

strated that visual search performance shows both pink and brown noise.

Variation in absolute eye position exhibits 1/f2 noise, resembling the random

walk pattern of brown noise. However, variation in saccade amplitude

generates a highly pink signal, indicating that long-term correlations emerge

out of diVerences in eye position.

Several simple mathematical models can be devised to generate a pink

signal (for a review, see Ward, 2002). Also, theories about coordinated time

scales across brain regions have been oVered (e.g., Chen, Ding, & Kelso,

1997; Ding, Chen, & Kelso, 2002; Gilden 2001; Gilden et al., 1995; Ward,

2002). Most recently, Van Orden, Holden, and Turvey (2003) lament the

concoction of these relatively simplistic models, sometimes just to capture

data from a few experiments. The authors oVer experiments demonstrating

that relatively automatic processes (e.g., word naming) can generate pink

noise, despite the suggestion by some that this should not happen in such

automatic processes (e.g., Gilden, 2001). Given their results and extensive

theoretical discussion, Van Orden et al. suggest that pink noise ‘‘is not the

product of a particular component of the mind or body. It appears to

illustrate something general about human behavior’’ (p. 345). To Van Orden
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et al., pink noise may be a by-product of interaction-dominant dynamics,

dynamics dependent upon the activity of large numbers of interactive com-

ponents (see also Usher, Stemmler, & Olami, 1995). Indeed, this perspective

is highly consonant with our own. As discussed, such neural complexity

begetting 1/f noise would also be responsible for the temporal continuity of

cognitive processes.

B. Stochastic Resonance

Stochastic resonance is a phenomenon of nonlinear systems in which a weak

periodic signal is amplified by ‘‘optimal’’ noise. As mentioned in the previous

section, noise is generally considered troublesome from a traditional per-

spective, yet the discovery of stochastic resonance in the 1980’s has resulted

in entire conferences and textbooks on the topic, from statistical theory

to applications (e.g., Ando & Graziani, 2000). The simplest way of pictur-

ing stochastic resonance, as it is traditionally introduced (Gammaitoni,

Haenggi, Jung, & Marchesoni, 1998), is a bistable symmetric nonlinear

system: a double-well potential. With the addition of noise, if past a certain

threshold of average amplitude, the system will ‘‘hop’’ between the two

states. Consider then subjecting this double-well potential to a weak sinusoi-

dal, periodic signal that can bias or shift the probability distribution in

the system wherein one potential becomes a favored absolute minimum

for the system by having the hopping synchronize with the weak signal.

The hopping will result in a stable state while this resonating of noise

Fig. 21. When a weak sinusoid is added to an equibiased stochastic process, resonance can

produce a significantly biased stochastic process.
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and sinusoid occurs (see Fig. 21). Stochastic resonance was initially

proposed as the explanation for the ice ages due to synchronization between

the ‘‘weak signal’’ of climate change due to orbital situation of the earth,

and a ‘‘Gaussian’’ noise signal from smaller-scale temperature fluctuations

(Benzi, Sutera, & Vulpiani 1981; Nicolis, 1982). It was then experimentally

demonstrated in simple devices, such as electronic logic gates and lasers.

Ward (2002) paints an interesting portrait of the relevance of stochastic

resonance by describing the life of a crayfish. Its ‘‘watery world of a rippling

brook’’ (p. 183) is terribly dangerous. The crayfish is preyed upon by other

creatures, such as larger fish, that can quickly spring upon this species, if it

were not for stochastic resonance in uniquely tuned hair cells on the crayfish.

These cells can detect the specific frequency of the crayfish’s predators,

helping the animal escape. It functions highly eYciently in its ‘‘watery

world’’ due to the ambient noise in the watery environment and having

that noise amplify the weak signal generated by an oncoming predator.

Douglass, Wilkens, Pantazelou, and Moss (1993) demonstrated this experi-

mentally in the crayfish by generating the relevant noise and weak predatory

signal in an experimental chamber.

This is one of the simplest demonstrations of the potential biological

benefit of cells that can take advantage of this statistical eVect. It has also

been demonstrated, for example, in the visual system of the cat. Noisy jitter

induced by micro-ocular tremor may actually enhance visual acuity to a

stimulus. By generating noise in a visual stimulus by producing motion jitter

of diVerent amplitudes, Hennig, Kerscher, Funke, and Woergoetter (2002)

demonstrated that certain cells in cortical areas 17 and 18 of the cat increase

responding to a moving oriented bar at intermediate levels of noise. Other

animals may make use of stochastic resonance as well, including crickets,

toads, and rats (see Ward, 2002, for a review).

In humans, Simonotto and colleagues (Simonotto, Riani, Seife, Roberts,

Twitty, & Moss, 1997; Simonotto et al., 1999) have demonstrated the role of

stochastic resonance in both human psychophysical and neuro-physiological

recordings. Simonotto et al. (1997) exposed subjects to contrast gratings of

variable spatial frequency under diVerent noise conditions and asked

them to report where their sensitivity to spatial frequency ceased. An inter-

mediate amount of noise reduced perceptive threshold considerably lower

than when the stimulus was noise-free. Simonotto et al. (1999) extended

these results to the human brain through imaging. Results of fMRI demon-

strated that visual regions of the brain contained more activity by volume

under optimal noise conditions. These kinds of experiments have been

extended to audition (Ward, Moss, Desai, & Rootman, 2001; Zeng, Fu, &

Morse, 2000) and tactile stimulation (Richardson, ImhoV, Grigg, & Collins,

1998).

Continuity of Mind 127



Comp. by:jaykumar Date:22/9/04 Time:15:44:51 Stage:First Proof File Path://

FSC/Serials/SerialsProdEnv/SERIALSWOMAT/PLM/045/PROOF/35-3B2COM-

POSITION/IHP4/PLM_045_C003.3D Proof by:Vijayalakshmi D. QC by:Alakesan

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

As with pink noise, very simple systems can also be devised to model

stochastic resonance. For example, as mentioned, a simple double-well

potential can exhibit it. Also, it can be modeled with a relatively simple

threshold mechanism (Ward, 2002). However, much as we discussed in

the context of pink noise, these simplistic models may belie the interactive

complexity through which stochastic resonance emerges in the human brain.

Though these simple models may serve as useful mathematical predictors,

the means by which the human brain shows stochastic resonance may be

considerably more complex. In a sophisticated neural model, Stemmler,

Usher, and Neibur (1995) simulated lateral neural interaction in V1 that

can benefit from internal noise. A large 20,000-node artificial neural net-

work, consisting of half excitatory neurons and half inhibitory neurons,

served to model receptive fields (with these receptive fields having varied

sensitivities organized in a spatially distributed manner across the large

network). Connections among these neurons served to model spatial excit-

atory and inhibitory input: Inhibitory inputs were sparsely distributed,

coming from throughout the visual cortex, and excitatory input more closely

packed. The model actually enhances a weak signal to a receptive field

by having noise-induced input from inhibitory surround neurons. The model

illustrates that patterns of stochastic resonance (among other patterns

the model can fit, such as visual search pop-out), can emerge from the

interaction of large numbers of small units.

C. Recurrence in Time

Recurrence quantification analysis (RQA) is a novel method of investigating

the time course of complex systems (Webber & Zbilut, 1994; Zbilut &

Webber, 1992). RQA permits its users to establish both global and local

measures of regularity or even randomness in a system. RQA exemplifies the

benefit of these dynamical analyses, showing how human brain and behavior

are highly amenable to analysis of the global properties of very complex

systems.

RQA is the quantification of a recurrence plot (RP), introduced by

Eckmann, Kamphorst, and Ruelle (1987), and related to the correlation

integral of dynamic systems mathematics (Takens, 1985). An RP is produced

by measuring at regular intervals some scalar quantity generated by a

system. For example, one might measure the temperature in a certain region

or error generated by a neural network. Any scalar quantity in any kind of

system will do, provided the measurements are at regular intervals. This time

series is then embedded in multiple dimensions by overlaying the time series

with temporally staggered versions of itself. Figure 22 illustrates this process.

Roughly, the columns of this embedded time series have a time index
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themselves and can be compared to column vectors of other time indices.

When two such columns are compared, we can compute the distance bet-

ween them. For any two vectors, at index i and j, say, we draw a point on

the RP (i, j) if their distance satisfies a certain threshold. In this way, periodi-

cities in the system result in undulating streaks of points in the RP (see

Fig. 23). RQA directly quantifies the pattern of points on the RP (for a clear

and concise introduction, see Riley, Balasubramaniam, & Turvey, 1999).

A particularly fruitful area in which RQA has been applied is the study of

postural control. The studies of Riley, Balasubramaniam, and Turvey (1999)

and Balasubramaniam, Riley, and Turvey (2000) primarily used RQA to

study the variables controlling minor adjustments in our center of pressure

(COP) during standstill (see also Riley & Clark, 2003). Riley et al. had

subjects look at depth gratings while standing on a device that could monitor

minor changes in their postural control (along the two axes of control,

antero-posterior, [AP] and medio-lateral [ML]). Subjects performed trials

in diVerent conditions, including eyes—open versus closed, and looking

straight-on versus looking to the right. The time series generated by record-

ing postural control, generally regarded as nonstationary and fluctuating,

Fig. 22. An example of embedding a time series using, for example, three dimensions and a

lag of 1. (See text for details.)
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permitted the authors to make the tentative observation that COP dynamics

are more ‘‘complex’’ when the eyes are closed. Also, postural sway was not

entirely random in that the RQA measure of determinism was fairly high for

the various COP time series. However, nonstationarity obviously present in

the RP analysis indicated that postural control may be a coupled dynamic

between stochastic processes and more deterministic controlled processes

(e.g., closing the eyes resulted in more deterministic, controlled patterns in

the RP).

In an interesting pair of experiments, Balasubramaniam et al. (2000) used

RQA to explore the conditions of fluctuation of COP in a precision task:

maintaining a laser pointer on a target at a certain distance. Once again,

measurements along the same two axes were compared. They used RQA to

measure, for example, determinism, recurrence, entropy, and trend in the

time series of these axes (these are values RQA generates from the RP; see

Balasubramaniam et al., 2000). The authors demonstrated that the axis

relevant to the task, such as the ML axis for holding the laser straight on

(for accuracy), and the AP axis for across your body to the side toward the

target, exhibited higher values of these measures, especially as task diYculty

increased. The overall analyses indicate that there is a level of independence

between these two sources of postural sway.

Fig. 23. In this very simple example of a recurrence plot, a series of sine values with some

noise added was subjected to embedding. The diagonal is the line of identity, where i ¼ j, and

one can observe further diagonal structure emerging at other time indices, indicating some

periodicity in the noisy sinusoidal time series.
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In a similar application, Shockley, Santana, and Fowler (2003) used RP and

RQA to analyze postural shifts during conversational interaction. Partici-

pants engaged in discussion about cartoon images in diVerent conditions,

depending on whether they were conversing with each other or confederates

outside the experimental area andwhether theywere facing each other or away

from each other during interaction. The authors measured postural shifts by

measuring changes in the location of the head and waist during conversation.

Participants talking to each other, rather than a silent confederate, always

exhibited more recurrence (a simple RQA measure) in a cross-recurrence plot

of their postural sway (i.e., an RP generated by comparing two separate,

embedded time series). Current related work is showing that cross-recurrence

in eye movements of a speaker and a listener predicts accuracy on comprehen-

sion questions (Richardson & Dale, 2004) and that recurrence of linguistic

forms in novel contexts characterizes the acquisition of various syntactic

categories in children’s language learning (Dale & Spivey, submitted).

Importantly, as related to our above discussion, the crucial aspect of RP

and RQA is that they visualize processes that change in time, whether

stationary or nonstationary, highly periodic or random. The fact that human

behavior—such as visual–postural interaction, postural control during con-

versation, and eye movements during instruction and comprehension—is

amenable to this analysis at least indirectly supports the perspective of

continuity (see also Marwan & Meinke, 2004, for an application of RQA

to event-related potentials). In summary, all the previous phenomena, espe-

cially when taken together, suggest that cognition is based in a complex

system composed of interaction-dominant subcomponents blending at mul-

tiple time scales, thus generating continuity in behavioral outcomes. Indeed,

all these properties of complexity substantiate our highlighted time scale (of

hundreds of milliseconds), since both noise and recurrence seem implicated

in real-time visual and linguistic processes.

VI. Conclusion

In this chapter, we have strolled briskly through a number of diVerent

examples of using continuous (or semicontinuous) measures of perceptual-

cognitive processing to reveal various mental phenomena as composed of

multiple partially active representations that compete over time. However, it

can sometimes seem that whenever a mental process is shown to exhibit such

continuous temporal dynamics (or to rely on distributed representations),

then the process in question is relegated to ‘‘part of perception, not

cognition,’’ where analog processing is not surprising. In Sections I–V, we

touched on evidence for, and simulations of, the temporal continuity of

AU:15
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representational dynamics in categorization, speech perception, spoken

word recognition, sentence processing, object and face recognition, visual

attention, and perceptual decisions, as well as correlational cross-talk be-

tween rather diVerent time scales of task performance. If all of these mental

phenomena were to be expunged from the domain of cognition on the

grounds that they do not rely on discrete temporally static symbolic repre-

sentations, then scant little would remain in that vaunted realm—perhaps

only problem solving and reasoning. (And, just to warn you, the movement

has its eyes on those processes as well; cf. Townsend & Busemeyer, 1995).

Rather than imputing to cognitive processes the unrealistic property of

functioning in a discretely symbolic way that real biological neural hardware

is incapable of implementing, perhaps we can instead welcome a smooth

merging of perception, cognition, and action as encouraged by Dewey

(1986). Environmental stimulation continuously flows into perceptual areas

of the brain, but since those areas receive some degree of feedback from

more cognitive areas of the brain, they’re really processing a combination of

aVerent sensory patterns of activation and reentrant cognitive patterns of

activation. These blended patterns of activation cascade to ‘‘higher’’ areas

of the brain where the relative concentrations of cognitive-like versus per-

ceptual-like components in the patterns may shift toward the cognitive end.

And soon, as these patterns of activation continuously travel toward motor

areas of the brain, in preparation for influencing behavior, the distributed

patterns begin to exhibit a significant degree of actionlike components as

well. For example, action representations themselves may be predominantly

defined in terms of their anticipated perceptual outcomes (cf. Prinz &

Hommel, 2002, for an excellent collection of reviews). And don’t forget

Dewey and Gibson’s reminder that relatively continuous motor output

dramatically alters the patterns of continuous sensory stimulation, thus

looping the entire system back onto itself. There simply does not appear to

be, nor should there actually need to be, an internal stage in which the

graded, distributed patterns of activation are converted into single unitary

symbols with logical truth values. After all, they would only have to be

reconverted right back into the graded, distributed patterns of activation

that we know occur in the motor cortices (e.g., Georgopoulos, 1995).

Although it is comforting to think of cognition in terms of multiple

diVerent easily labeled interpretations of individuated stimuli having non-

overlapping symbolic descriptions (e.g., Dietrich & Markman, 2003; Fodor

& Pylyshyn, 1988), the fact of the matter is that the brain spends most of

its time in regions of state-space that do not allow discrete symbolic descrip-

tions. Thus, rather than being the digital computational intermediary be-

tween analog perception and action, whose job is to collapse the

probabilistic distributions into discrete symbols, cognition is perhaps just
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as analog and graded as the sensory and motor systems themselves. And the

much awaited collapsing of those distributed multifarious representational

patterns does not actually take place until motor movement is executed (and

even then it sometimes comes out as an amalgam of two motor programs,

e.g, Gold & Shadlen, 2001).

Finally, we should acknowledge that, in our eVort to speak to the

traditional cognitive psychologist, it is possible that we have focused too

much on the dynamics of internal cognitive processing and not enough on

the dynamics of larger systems such as that of a human coupled with its

environment (e.g., A. Clark, 2003; Gibson, 1979; O’Regan & Nöe, 2001;

Spivey, Richardson,&Fitneva, 2004; Turvey; &Carello, 1981) ormultiple hu-

mans interacting with one another (e.g., Knoblich & Jordan, 2003; Schmidt,

Carello, & Turvey, 1990; Sebanz, Knoblich & Prinz, 2003; Shockley, Santana,

& Fowler, 2003). However, in describing and supporting the continuity of

mind for an audience of cognitive psychologists, showing how internal

perceptual-cognitive processing exhibits continuous change in the salience

of multiple simultaneously active representations is perhaps the crucial first

step in steering the field away from its digital computer metaphor for

cognition. By first replacing the concept of discrete representations in

the mind with multifarious patterns of neural activation that change

continuously over time, we can set the stage for exploring a reconsideration

of exactly how ‘‘representation-like’’ these continuous trajectories in state-

space really are (regardless of whether we’re talking about a neural

state-space or an organism-environment state-space). In this way, we hope

that the cognitive sciences can eventually find a responsible and coherent

integration of the useful, lasting insights that came from cognitive psycholo-

gy and from connectionism, and those that are coming from neuroscience,

ecological psychology, and dynamic systems theory.
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