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This study assessed whether a sample of two hundred seven 3- to 7-year-olds could interpret multidigit
numerals using simple identification and comparison tasks. Contrary to the view that young children do not
understand place value, even 3-year-olds demonstrated some competence on these tasks. Ceiling was reached
by first grade. When training was provided, there were significant gains, suggesting that children can improve
their partial understandings with input. Findings add to what is known about the processes of symbolic
development and the incidental learning that occurs prior to schooling, as well as specifying more precisely
what place value misconceptions remain as children enter the educational system.

Research has established that most children enter
school with basic counting skills and a firm concep-
tual understanding of numbers up to 10. From an
early age, children can name, match, order, and cal-
culate with these quantities (for a review, see Mix,
Huttenlocher, & Levine, 2002). This early compe-
tence provides a strong foundation upon which to
build conventional skills and most children fare
well as long as single-digit number facts are
involved. However, when multidigit numbers are
introduced, even competent children struggle—
struggles that manifest themselves not only in weak
place value concepts, but also in rote, error-prone
application of algorithms for multidigit calculation
(Fuson, 1990; Kamii, 1986; Kouba et al., 1988;
Labinowicz, 1985; Miura, 1987; Ross, 1990; Towse
& Saxton, 1997). This pattern is concerning because
place value is the gateway to conceptualizing large
quantities and more complicated mathematical
operations, such as addition with carrying. More-
over, there is a significant relation between chil-
dren’s place value skills in early elementary grades
and subsequent problem-solving ability. In short,
children who fail to master place value face chronic
low achievement in mathematics (Ho & Cheng,

1997; Moeller, Martignon, Wessolowski, Engel, &
Nuerk, 2011).

These difficulties have led researchers to con-
clude that place value notation is fundamentally
inaccessible to young children. Some have argued
that the spoken and written numeration systems
are so different that children fail to see how they
are related without specialized instruction, such as
lessons using base-10 blocks (e.g., Fuson, 1990;
Fuson & Briars, 1990). Others have argued that
children lack the logical capacity to comprehend
place value notation (Chandler & Kamii, 2009;
Fosnot & Dolk, 2001). On either account, it is
assumed place value notation is incomprehensible
to children without significant development and
direct instruction.

However, these assumptions are inconsistent
with what we know about early cognition and
learning. We know, for example, that toddlers
acquire the complex grammatical structures in their
native languages simply through exposure—with-
out the need for direct instruction (Aslin & New-
port, 2012; Huttenlocher, Vasilyeva, Cymerman, &
Levine, 2002; MacNamara, 1972). The same is true
for word learning. Even in complex scenes with
numerous potential referents (Smith & Yu, 2008), or
long speech streams without gaps between words
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(Graf-Estes, Evans, Alibali, & Saffran, 2007), infants
can segment and learn the meaning of new words
with only brief exposure. Researchers have
explained these findings in terms of statistical learn-
ing—the idea that learners actively make sense of
the perceptual stream by tabulating the statistical
patterns in it (e.g., Kidd, 2012; Yu, Ballard, & Aslin,
2005). So, for example, infants identify word seg-
ments in an uninterrupted speech stream by notic-
ing that /pa/ follows /ba/ more frequently than it
follows /do/.

It is possible children acquire a partial under-
standing of multidigit numerals the same way.
Parents and teachers provide relatively little direct
input related to number (Gunderson & Levine,
2011; Klibanoff, Levine, Huttenlocher, Vasilyeva, &
Hedges, 2006) so it is unlikely they deliberately
teach children to read multidigit numbers. How-
ever, multidigit numerals are ubiquitous in chil-
dren’s environments—as room numbers, phone
numbers, and street addresses; in books, calendars,
and menus; and throughout stores on packaging,
price tags, and signs. Because statistical learning
happens rapidly, this admittedly limited exposure
could be sufficient to begin extracting certain
structural patterns. For example, two-digit number
names almost always have the sound /ee/in the
middle and three-digit number names almost
always have the word hundred in them. Obviously,
this correlation is not perfect and it breaks down
further when longer number names are consid-
ered, but it is consistent enough to help children
guess that the words thirty-four, for example, map
onto a number that looks like XX and not one
that looks like X. Children could detect this corre-
lation by hearing multidigit numbers named while
also seeing them in print, as they might when par-
ents are commenting on a calendar, asking their
child to push the buttons on an elevator, or look-
ing for a room number in an office building. Other
statistical cues to number identity include the
word order of number names (e.g., seventy-eight
maps onto 78 better than the name eighty-seven
in left-right reading order) and the association of
single-digit numerals to their verbal names (e.g.,
the numeral 324 is probably not named six hun-
dred fifty-one because it has neither a six, a five, or
a one in it).

Identifying a word’s referent in a complex per-
ceptual scene is the first step toward determining
its meaning, but statistics could also support infer-
ences about multidigit number meanings. For
example, children could use their knowledge of sin-
gle-digit number meanings to make guesses about

the ordinality of multidigit numbers. Preschool chil-
dren know large single-digit numerals (e.g., 7, 8, 9)
represent larger quantities than small single-digit
numbers (e.g., 1, 2, 3), even if they have not learned
the precise meanings of these symbols (LeCorre &
Carey, 2007; Sarnecka & Gelman, 2004). This associ-
ation would be enough to support the correct guess
that 899 represents more than 122. Eventually, chil-
dren may realize that the magnitude of the leftmost
digit matters more than the others, or that the num-
ber of digits matters more than the meanings of the
individual digits. These realizations could stem
from experiences with package labels (e.g., a box of
blocks labeled XXX is bigger and has more in it
than the box labeled XX). Such insights, though not
the same as a complete understanding of place
value, could be significant steps toward this under-
standing. However, the possibility that children
bootstrap into the place value system has been
largely overlooked due to the intense focus on sub-
sequent misconceptions and limitations (e.g., error-
prone multidigit calculation).

In fact, there is emerging evidence that young
children know quite a lot about multidigit numer-
als. In a recent study, preschool children demon-
strated the ability to write multidigit numerals with
some success (Byrge, Smith, & Mix, in press). More-
over, their errors were “intelligent”—appearing to
reflect inferences about the structure of written
notation gleaned from statistical patterns in verbal
input. For example, rather than using spatial posi-
tion alone to indicate base-10 units in written
numerals, children frequently invent a sort of
expanded notation, such that 113 is written as
10,013. Although this error has been viewed by
some as further evidence of children’s struggles
with place value notation (e.g., Bussi, 2011), Byrge
et al. (in press) argued that it is more akin to gram-
matical overgeneralizations (e.g., goed instead of
went) and may represent an important developmen-
tal milestone even if it does not align completely
with cultural conventions.

In summary, although children may lack a com-
plete understanding of place value until late ele-
mentary school and may well struggle with certain
misconceptions without instructional support, it is
unlikely they enter school a blank slate. Instead,
they may bring partial knowledge of the place
value system derived from sensitivity to statistical
patterns in multidigit numerals and verbal number
names. However, this partial knowledge has not
been demonstrated empirically and little is known
about its developmental course. By taking a
broader, developmental perspective, in which
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multidigit numerals are seen as akin to other forms
of language input, this study addresses that gap.
Specifically, rather than embedding our assessment
in complex tasks, such as multidigit calculation, we
used simple tasks that focused directly on the map-
pings among written numerals, spoken numbers,
quantities of dots, and block patterns. Thus, we
could more sensitively ascertain the extent to which
young children actively make sense of the place
value system.

Experiment 1

The first experiment examined the performance of
kindergarten, first-, and second-grade children in
two tasks: (a) mapping spoken number names to dig-
its, dots, or block representations and (b) indicating
which of two arrays—digits, dots, or blocks—repre-
sented “more.”

Method

Participants

The total sample of 91 children was divided into
three age groups based on grade in school (kinder-
garten: M = 61 months, range = 49–73 months, n =
31; first grade: M = 74 months, range = 61–84
months, n = 25; second grade: M = 86 months,
range = 72–96 months, n = 35). Roughly half the
participants (n = 37) were boys, and they were
evenly divided among the three grades (kindergar-
ten: n = 12; first grade: n = 12; second grade: n = 13).
An a priori power analysis, using the statistical pro-
gram G*Power 3.1 (Faul, Erdfelder, Buchner, &
Lang, 2009), indicated that a sample size of 21 partic-
ipants per age group (or n = 63 total) would be ade-
quate to achieve 80% power with a medium effect
size.

All children came from the same, ethnically
diverse, middle-socioeconomic-status (SES) popula-
tion, for which the 2010 U.S. Census reported 78.4%
European American, 10.6% Asian, 6.8% African
American, 1.4% from other ethnicities, and 2.9%
from two or more ethnicities. Within these groups,
3.4% were identified as Hispanic or Latino. The
median family income in this community was
$81,158.

Materials and Procedures

Children’s knowledge of multidigit numerals was
assessed using two tasks. For the Which is x? task,

children saw two quantities represented with either
(a) written numerals, (b) base-10 blocks, or (c)
clouds of dots, and were asked to point to the quan-
tity named by the experimenter (e.g., “Which is one
hundred thirty-two?”). The same 20 items were
used in each stimulus condition (numerals, blocks,
and dots), but they were presented in one of two
random orders. The order of the three stimulus con-
ditions was counterbalanced across children.

The numeral displays consisted of two numerals
printed in black ink, 96-point Calibri font, and
placed side by side in the center of a horizontally
oriented 8 9 11 in. sheet of white paper. The two
numerals were separated by 2.6–4 in. of white
space, depending on how many digits were
involved (i.e., one-digit numerals were spaced far-
ther apart than two- and three-digit numerals).
Across the 20 trials, the larger of the two quantities
was presented on the right for 10 trials and on the
left for 10 trials, in a random order.

The blocks displays showed the same quantities,
also presented side by side on a horizontal 8 9 11
in. sheet of white paper, but represented using pho-
tographs of base-10 blocks. The blocks were lined
up left to right, from highest to lowest place, just as
they are in written numerals. The overall length of
each quantity was 15.65 mm on average
(range = 3.81–29.46 mm). As for the numerals con-
dition, the larger quantity appeared on the left for
half the trials, and the order of left-right presenta-
tion was randomized.

The dot displays contained two arrays of black
dots (dot diameter = 1.3 mm), arranged side by
side on an 8 9 11 in. sheet of white paper, and sep-
arated by a vertical line. Within each display, the
dots were randomly dispersed within an imaginary
93 9 70 mm rectangle (total area = 6,510 mm). The
sizes of the individual dots varied depending on
how many dots were in the display, such that more
numerous displays contained smaller individual
dots (range = 1.3–3.0 mm). In this regard, number
varied inversely with dot size and density, but
overall area of the dot clouds was controlled. This
was acceptable because our aim was not to test
whether children could map or compare exact num-
bers of discrete dots. Instead, we aimed only to test
whether children could (a) map numerals to an
approximate quantitative referent and (b) compare
such quantities as a baseline for interpreting their
performance in the other conditions. Thus, it was
not important to control dimensions of continuous
amount and, given the set sizes involved, it was
preferable to allow access to these dimensions if it
helped children discriminate the sets. As for the
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other stimulus conditions, the larger quantity
appeared on the left for half the trials, and the
order of left-right presentation was randomized.

The Which is more? task was similar except that
instead of being asked to identify a specific number
(e.g., 58), children were asked to identify which
numeral, block configuration, or dots picture repre-
sented the larger quantity (e.g., “Which is more?”).
The parameters of the displays were the same
across tasks, however. For example, the dot dis-
plays in the Which is more? task contained two
arrays of black dots (dot diameter = 1.3 mm,
range = 1.3–3.0 mm), arranged side by side on an
8 9 11 in. sheet of white paper and separated by a
vertical line. Within each display, the dots were ran-
domly dispersed within an imaginary 93 9 70 mm
rectangle (total area = 6,510 mm). As before, the
same 20 items were used for all three stimulus con-
ditions (numerals, blocks, and dots) but in different
random orders. The order of three stimulus condi-
tions within each task was counterbalanced across
children, and the order of the two tasks was coun-
terbalanced such that half the children within each
grade completed the Which is x? task first.

Because children completed three versions of the
20 Which is x? items, and three versions of the 20
Which is more? items, they completed 120 items total.
Although this constituted a rather lengthy test in
terms of number of items, children required only
about 10–15 min to complete it and there were no
signs of fatigue—that is, all children completed all
items. Testing took place in the late fall or early win-
ter, when children had received about 3 months of
grade level instruction. For the majority of children,
this instruction was based on the Everyday Mathemat-
ics curriculum. Children were tested in groups of
two or three, but were seated in such a way that they
were unable to view their peers’ test papers.

The sets of items for the Which is more? and Which
is x? tasks were selected to be roughly comparable
but not identical, so that they could be used as
within-subject measures in some experiments and
because the likely source of errors (and their diagno-
sis) would benefit from somewhat different compari-
sons. Both sets included some one-digit numerals so
that we could assess whether even young preschool-
ers could map names to single-digit numbers and
compare those numbers with respect to quantity.
Furthermore, the Which is x? set included numbers
that differed only in the addition or place of zero
since pilot work indicated one early common error in
mapping names to numbers was knowing how to
interpret 0. For the Which is more? task, pilot work
indicated that children generally picked the string

with more digits as “more” and therefore the set
tested included more (but not all) equal length
strings and strings composed of the same digits in
different places or that different in just one digit.

Results and Discussion

Children’s proportions correct by task and grade
level are presented in Table 1. An inspection of the
means suggests there is improvement from kinder-
garten to second grade, but that all children per-
formed well above chance. This pattern was
confirmed using t tests that compared each age
group’s mean score to chance (i.e., 50%). Actual per-
formance was significantly different from chance
across age, task, and condition (all ps < .001). We
examined group differences using a repeated
measures analysis of variance (ANOVA) with task
(Which is x? vs. Which is more?) and stimulus condi-
tion (numerals, dots, and blocks) as within-subjects
factors, and grade level (K, 1, 2) as a between-sub-
jects factor. As expected, there was a significant main
effect of grade, F(2, 264) = 94.37, mean square error
MSE = .03, p < .001, g2

p = .42, due to significant
improvement on the tasks with increasing age such
that second graders (M = 0.87, SD = .10) outperformed
both first graders (M = 0.81, SD = .12), t(178) = 4.02,
p < .001, and kindergarten students (M = 0.66,
SD = .15), t(196) = 11.77, p < .001, and first graders
outperformed kindergarteners, t(166) = 6.87, p < .001,
all two-tailed, Bonferroni t tests.

The ANOVA also revealed a significant main
effect of stimulus condition, F(2, 264) = 34.44,
MSE = .03, p < .001, g2

p = .21, that was due to better
performance in the numerals condition (numerals
vs. blocks: p < .001; numerals vs. dots: p < .0001;
blocks vs. dots: p = .65) and a significant main
effect of task type, F(1, 264) = 97.51, MSE = .01,
p < .0001, g2

p = .27, that reflected higher scores
overall on the Which is more? task (vs. Which is x?).
These effects were mediated by significant interac-
tions between task and stimulus, F(2, 264) = 29.73,
MSE = .01, p < .001, g2

p = .18, and age and stimu-
lus, F(4, 264) = 3.05, MSE = .03, p = .02, g2

p = .04.
Pairwise comparisons indicated that the Task 9

Condition interaction was due to several significant
condition differences in the Which is x? task
(Mnumerals = .86, SD = .17; Mblocks = .68, SD = .68),
numerals versus blocks, t(180) = 6.95, p < .001, and
numerals versus dots, t(180) = 9.32, p < .0001, Bon-
ferroni two-tailed, but no significant stimulus differ-
ences in the Which is more? task.

The Age 9 Stimulus interaction was due to older
children (first and second graders) performing
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significantly better in the numerals condition than in
both blocks and dots–numerals vs. blocks: first grade
Mnumerals = .91, SD = .10; Mblocks = .77, SD = .10),
t(48) = 4.72, p < .001, and second grade (Mnumerals =
.97, SD = .04; Mblocks = .86, SD = .10), t(68) = 6.05,
p < .001; numerals vs. dots: first grade (Mdots = .74,
SD = .08), t(48) = 6.32, p < .001, and second grade
(Mdots = .80, SD = .06), t(68) = 13.66, p < .001, Bon-
ferroni two-tailed–but only a marginally significant
condition difference between numerals and blocks
for kindergarten students (Mnumerals = .70, SD = .19;
Mblocks = .62, SD = .13), t(60) = 1.87, p < .067, Bon-
ferroni, two-tailed. Children in second grade also
performed better in the blocks condition (vs. dots),
t(68) = 2.90, p = .005, but this difference was not
obtained in the other two grades (both ps > .32).

Certain aspects of these results are not surprising
in light of previous research. First, there is reason
to think children would perform quite well in the
Which is more? dots and blocks conditions based on
studies showing that infants and young children
can discriminate large quantities presented in visual
arrays (e.g., Cantlon, Platt, & Brannon, 2009;
Halberda & Feigenson, 2008; Lipton & Spelke,
2003). Also, we did not prevent children from using
continuous perceptual variables, such as density or
area, to discriminate these displays so some degree
of success was anticipated. Also, it is not surprising
that Which is more? performance would be higher
than the performance in Which is x? task given that
this task requires a less precise grasp of the quanti-
ties being compared. Children only need to identify
which quantity is greater. The fact that second-
grade students performed better for blocks than
dots likely reflects greater familiarity with these

materials after exposure to them in school. Most
kindergarten and first-grade students would have
had far less, if any, experience with base-10 blocks.

What is surprising is that (a) children of all ages
performed significantly better in the numerals ver-
sion of both tasks than they did with either of the
visual arrays (i.e., blocks or dots) and (b) children
of all ages performed above chance on the Which is
x? version of the blocks and dots conditions even
though this task required them to interpret verbal
number names. This evidence of strong perfor-
mance in the conditions and tasks that involve
numerals and number names suggests that children
understand these symbols well enough to support
accurate and precise comparisons.

We next examined children’s performance on the
numerals tasks more closely, to determine which
particular items were relatively accessible. The 20
Which is x? items are presented in Table 2, rank
ordered for difficulty based on the kindergarten
children’s mean performance. Recall that there was
a 50% probability of being correct by guessing in
this forced-choice task. When we compared each
age group’s performance to chance, item by item,
we found that kindergarteners performed randomly
on the first 6 items in the table, but performed sig-
nificantly above chance on the rest.

We can infer the strategies children used by
examining the demands and affordances of various
items. Several of the easiest items could be solved
correctly by recognizing individual written digits
(e.g., 2 vs. 8; 4,279 vs. 6,358). That is, if a child
knew what the numeral 2 looked like, it would be
possible to identify even a four-digit number with 2
in it versus one without. However, other items

Table 1
Proportion Correct by Task, Stimulus, and Grade (Experiment 1)

Grade Stimulus condition Which is x? t test Which is more? t test

Kdg Blocks .55 (.12) 24.43*** .69 (.21) 23.48***
Dots .59 (.09) 35.04*** .71 (.20) 27.00***
Numerals .70 (.19) 19.85*** .70 (.24) 20.79***
Overall .61 (.15) 7.29*** .70 (.21) 9.20***

First Blocks .68 (.14) 23.17*** .86 (.12) 36.47***
Dots .65 (.14) 22.82*** .84 (.09) 44.14***
Numerals .93 (.09) 47.66*** .89 (.13) 32.55***
Overall .75 (.18) 12.32*** .86 (.11) 27.96***

Second Blocks .80 (.16) 28.53*** .91 (.09) 61.01***
Dots .72 (.12) 34.88*** .88 (.06) 87.37***
Numerals .96 (.05) 103.58*** .97 (.04) 115.07***
Overall .83 (.16) 21.53*** .92 (.08) 55.19***

Note. One-tailed t tests compared each proportion correct to chance level of .50. Kdg = kindergarten.
***p < .001.
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required at least partial knowledge of the place
value system. For example, to identify 670 (vs. 67),
children could not simply choose the written num-
ber that had 6 and 7 in it. They would also have to
know that the word hundred in the number name
signaled more digits. Indeed, kindergarten children
performed quite well on a number of items with
this requirement (e.g., 850 vs. 85, 402 vs. 42, etc.).
Another heuristic children might use in this task
would be mapping the first number name to the
leftmost digit (as for 807 vs. 78). However, for most
items requiring this inference, children performed
at chance (e.g., 356 vs. 536) so it is not clear they
applied a leftmost digit strategy. Items that
required accurate mapping, place by place, and
could not be solved using any of the partial knowl-
edge heuristics (e.g., 350 vs. 305; 2,843 vs. 2,483)
were among the most difficult for kindergarten stu-
dents. These items remained the most challenging
in first grade, but by second grade, children
responded to even these items at ceiling.

The rank ordering of performance on Which is
more? items is presented in Table 3. On this task,
children saw two written numerals and chose the
one that represented a larger quantity. Here again,
children performed mostly at ceiling by first grade.

Kindergarten children performed at chance on the
first three items, but were significantly above
chance beyond that, albeit not close to ceiling. Thus,
at least some kindergarten children had enough
knowledge of place value and number meanings to
make educated guesses.

Some of the easiest items could be solved by rec-
ognizing individual digits (e.g., 6 vs. 8). For a few
items, children could answer correctly if they knew
that two-digit numbers represent smaller quantities
than three-digit numbers (e.g., 101 vs. 99). Others
had the same number of digits but one digit dif-
fered (e.g., 525 vs. 585; 4,520 vs. 4,620). Although
the differences in these pairs was relatively subtle,
children performed quite well, perhaps because
they tend to choose quantities with more large
numbers in them—for example, choosing the num-
ber with 8 in it for 525 vs. 585. The more challeng-
ing items had the same digits in different orders. It
is possible for children with partial knowledge of
place value to choose the larger quantity if they
understand that the leftmost digit carries more
weight. In some cases, they appeared to use this
heuristic (e.g., 27 vs. 72, 123 vs. 321, 6,892 vs.
2,986); however, this was not completely consistent
as several such items were also among the most

Table 2
Proportion Correct by Item and Grade for Which Is x? Numerals
(Experiment 1)

Items

Grade

Kdg First Second

206 vs. 260 0.39 0.96 0.94
356 vs. 536 0.52 0.96 0.94
350 vs. 305 0.58 0.76 0.89
36 vs. 306 0.58 0.92 0.97
2,843 vs. 2,483 0.61 0.80 0.94
267 vs. 627 0.61 0.92 0.97
201 vs. 21 0.65 0.96 0.97
670 vs. 67 0.65 1.00 0.91
85 vs. 850 0.68 0.92 1.00
64 vs. 604 0.68 0.96 0.91
1,002 vs. 1,020 0.68 0.80 0.94
402 vs. 42 0.71 0.88 1.00
1,000 vs. 100 0.74 1.00 0.94
105 vs. 125 0.74 0.96 0.97
11 vs. 24 0.77 1.00 1.00
12 vs. 22 0.77 0.88 1.00
807 vs. 78 0.77 0.92 0.97
4,279 vs. 6,358 0.81 0.92 1.00
15 vs. 5 0.81 1.00 1.00
2 vs. 8 0.84 1.00 1.00

Note. Kdg = kindergarten.

Table 3
Proportion Correct by Item and Grade for Which Is More? Numerals
(Experiment 1)

Items

Grade

Kdg First Second

614 vs. 461 0.55 0.64 0.91
5,687 vs. 8,657 0.55 0.76 0.94
14 vs. 41 0.55 0.84 0.94
16 vs. 62 0.65 0.92 0.94
30 vs. 60 0.65 0.92 0.97
11 vs. 19 0.65 0.96 1.00
123 vs. 321 0.68 0.72 0.97
458 vs. 845 0.68 0.72 0.97
6,892 vs. 2,986 0.68 0.88 0.97
670 vs. 270 0.68 0.96 1.00
26 vs. 73 0.71 0.96 0.97
3 vs. 7 0.71 1.00 1.00
4,620 vs. 4,520 0.74 0.92 0.94
6 vs. 8 0.74 0.96 1.00
101 vs. 99 0.81 1.00 0.94
100 vs. 10 0.81 1.00 0.97
223 vs. 220 0.84 0.92 1.00
72 vs. 27 0.87 0.84 1.00
585 vs. 525 0.87 0.96 0.97

Note. Kdg = kindergarten.
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difficult (e.g., 614 vs. 461, 5,687 vs. 8,657). Several
of this type also remained the most difficult items
in first grade.

Overall, the results of Experiment 1 are unex-
pected given the well-documented difficulties chil-
dren have grasping multidigit numerals in previous
research. This is not to say children have mastered
place value at this age, but rather that they know
more than previous research might lead one to
believe. Even kindergarten students who are unlikely
to have received direct instruction in place value can
accurately identify and compare written numerals—
better, in fact, than they can identify and compare
pictorial representations of the same quantities. This
indicates that children are actively making sense of
multidigit numerals they encounter in everyday life.
Direct instruction likely enhances this ability. Chil-
dren in first and second grades had likely been
taught to read and write multidigit numerals (Com-
mon Core State Standards Initiative, 2010; National
Council of Teachers of Mathematics, 2000) and they
reached ceiling on both numerals tasks. Still, children
bring a stronger experiential foundation to place
value instruction than educators may realize.

The strong performance of kindergarten students
in Experiment 1 raises the question of whether even
younger children also exhibit understanding of
multidigit numerals and large quantities. Perhaps
children begin to make certain inferences even ear-
lier. We investigated this possibility in Experiment 2.

Experiment 2

Method

Participants

The total sample of 92 children was divided into
three age groups (3½-year-olds: M = 45 months,
range = 31–51 months, n = 26; 4½-year-olds: M =
56 months, range = 52–60 months, n = 32, 5-year-
olds:M = 65 months, range = 60–72 months, n = 34).
Roughly half the participants (n = 44) were boys,
and they were evenly divided among the three age
groups (3½-year-olds: n = 11; 4½-year-olds: n = 17;
5-year-olds: n = 16). An a priori power analysis,
using the statistical program G*Power 3.1 (Faul
et al., 2009), indicated that a sample size of 21 par-
ticipants per age group (or n = 63 total) would be
adequate to achieve 80% power with a medium
effect size. All children came from an ethnically
diverse, middle-SES population similar to that sam-
pled in Experiment 1 but from another state.
According to the 2010 U.S. Census, this community

was 83.0% European American, 8.0% Asian, 4.6%
African American, 1.6% from other ethnicities, and
3.0% from two or more ethnicities. Within these
groups, 3.5% reported being of Hispanic or Latino
descent. The median family income was $50,054.
Participants were recruited from 12 different day
cares with diverse programs but with an overall
focus on social and play activities. Many of the
5-year-olds were in some form of half-day kinder-
garten (at their day care); kindergarten is not
required by the state of Indiana and the curriculum
varies considerably across different schools.

Materials and Procedures

The materials and procedures were the same as in
Experiment 1, except that children were tested indi-
vidually and the tests had fewer items. Specifically,
instead of 20 items per test (Which is x? vs. Which is
more?), there were 8 items per test in Experiment 2.
Also, children were tested only on the numerals ver-
sion of both tasks, and not the other conditions
(blocks and dots). Thus, children completed 16 items
total (vs. 120 in Experiment 1). The number of items
was limited because pilot testing indicated that 3-
year-olds were unable to complete 120 items. Also,
because we were probing the very earliest emergence
of competence, we did not include items we knew
were more difficult for kindergarten students.
Finally, because our main goal was to measure chil-
dren’s ability to interpret written numerals, we tested
only numerals items. The 8 items on each test were
drawn from a pool of 16 items and counterbalanced
across children. To maximize comparability across
experiments, the 16-item pool comprised a subset of
the 20 items from Experiment 1.

Results and Discussion

Children’s proportion correct on the two tasks, by
condition and age group, is presented in Table 4. As

Table 4
Proportion Correct by Task and Grade (Experiment 2)

Age in
years

Which is x?
task t test

Which is
more? task t test

3½ .61 (.19) 3.15** .57 (.14) 2.79**
4½ .69 (.20) 5.37*** .64 (.16) 4.80***
5 .79 (.22) 7.69*** .75 (.15) 9.61***

Note. One-tailed t tests compared to chance level of .50. These
data include numerals performance only as blocks and dots were
not included in Experiment 2.
**p < .01, ***p < .001.
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before, there was significant improvement with age.
A repeated measures ANOVA with task (Which is x?
vs. Which is more?) and age (3½, 4½, and 5 years old)
as a between-subjects factor revealed a significant
main effect of age, F(1, 89) = 13.59, MSE = .04,
p < .001, g2

p = .23. Post hoc tests with Bonferroni cor-
rection showed that the 5-year-olds performed better
than either 3½-year-olds (p < .001) or 4½-year-olds
(p = .004) but 4½-year-olds did not outperform 3½-
year-olds (p = .19). Still, all three age groups
performed significantly above chance (see Table 4).
Neither the main effect of task, nor task and age
interaction reached significance.

The rank order performance of children on both
tasks is presented in Tables 5 and 6. As in Experi-
ment 1, children demonstrated some competence
interpreting multidigit numerals from a much ear-
lier age than previous research would suggest. They
began to correctly identify and compare two- and
three-digit numerals starting at 3½ years of age.
Although there was steady improvement from 3½
to 5 years and children were not at ceiling on most
items even at age 5, they nonetheless performed
significantly above chance on both tasks by
3½ years of age and on most items within each task
by 4½ years of age. This is most likely attributable
to exposure to multidigit numerals without formal
instruction as not all children in this study attended
preschool and even for those who did, place value
instruction probably was not offered. Thus, as in

other areas of language development, it appears
children infer the meanings of these numbers using
whatever experiences they can access. If we focus
on only the Which is x? items for which 3½-year-
olds performed above chance, it appears they used
two strategies. One strategy was simply recognizing
familiar written digits, like 2, 8, and 12. The other
strategy was knowing that the word hundred in a
number name signals more digits (e.g., 201 vs. 21).
This was not consistent, however, and most items
that could be answered correctly that way were
missed by 3½-year-olds (e.g., 670 vs. 67). Among
4½-year-olds, this pattern was more consistent
albeit far from ceiling.

Indeed, looking across Experiments 1 and 2, chil-
dren did not reach ceiling until second grade, by
which time they had almost certainly received place
value instruction in school. Now that we know
more specifically where younger children’s difficul-
ties lie (i.e., which particular items were most diffi-
cult for them as evident in Tables 2, 3, 5, and 6), it
is interesting to ask whether place value instruction
can improve learning on these items. Previous
research suggests two main approaches to place
value instruction. One focuses on written symbols
(Kamii, 1986) whereas the other incorporates con-
crete models, such as base-10 blocks (Fuson & Bri-
ars, 1990). In Experiment 3, we provided both types
of instruction to a group of kindergarten students
to see whether either approach would lead to
improvement.

Table 5
Proportion Correct by Item and Age in Years for Which is x? Numer-
als (Experiment 2)

Items

Age in years

3½ 4½ 5

206 vs. 260 0.42 0.50 0.59
1,000 vs. 100 0.46 0.38 0.68
807 vs. 78 0.50 0.72 0.74
670 vs. 67 0.42 0.69 0.76
1,002 vs. 1,020 0.62 0.75 0.76
201 vs. 21 0.73 0.66 0.79
64 vs. 604 0.69 0.69 0.79
105 vs. 125 0.46 0.75 0.79
350 vs. 305 0.54 0.75 0.79
85 vs. 850 0.50 0.78 0.79
402 vs. 42 0.54 0.66 0.85
36 vs. 306 0.54 0.69 0.85
15 vs. 5 0.58 0.97 0.88
11 vs. 24 0.62 0.81 0.88
12 vs. 22 0.73 1.00 0.91
2 vs. 8 0.73 1.00 0.91

Table 6
Proportion Correct by Item and Age in Years for Which is More?
Numerals (Experiment 2)

Items

Age in years

3½ 4½ 5

670 vs. 270 0.50 0.47 0.56
4,620 vs. 4,520 0.50 0.53 0.65
26 vs. 73 0.62 0.56 0.65
14 vs. 41 0.62 0.59 0.68
72 vs. 27 0.42 0.47 0.71
123 vs. 321 0.46 0.59 0.71
223 vs. 220 0.69 0.72 0.71
101 vs. 99 0.62 0.53 0.74
16 vs. 62 0.42 0.66 0.74
585 vs. 525 0.46 0.63 0.76
30 vs. 60 0.58 0.69 0.76
6 vs. 8 0.58 0.81 0.85
11 vs. 19 0.73 0.66 0.91
3 vs. 7 0.69 0.91 0.94
100 vs. 10 0.73 0.72 0.94
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Experiment 3

Method

Participants

A sample of 24 kindergarten students (M =
57 months, range = 45–69 months) was recruited
from the same, ethnically diverse, middle-SES pop-
ulation sampled in Experiment 1. Roughly half the
participants (n = 13) were boys. Children were
evenly divided into two training groups: base-10
blocks (n = 12) and symbols-only (n = 12). An a pri-
ori power analysis, using the statistical program
G*Power 3.1 (Faul et al., 2009), indicated that a
sample size of 21 participants would be adequate
to achieve 80% power with a medium effect size.

Materials and Procedure

Children’s knowledge of multidigit numerals
was assessed using the two tasks from Experiment
1 (i.e., Which is x? and Which is more?). All three
conditions (numerals, dots, and blocks) were tested
within each task. There were 20 items from each
condition, resulting in 60 items per task or 120
items total. Children completed both tasks prior to
training and then again within 2 days of the final
training session.

The two training groups completed five lessons
on topics that included sorting and matching block
types or number cards, copying block patterns or
numerals, mapping numerals to blocks, mapping
blocks to numerals, and block and number compar-
isons. The content and instructional approaches
were modeled on those commonly used in schools
and typical mathematics curricula (e.g., Everyday
Mathematics). The two training conditions were
based on different theoretical notions about the
emergence of symbolic meaning and symbol
grounding. One idea is that symbols are grounded
in concrete experience (Barsalou, 2008; Lakoff &
Nunez, 2000) and these experiences may be espe-
cially critical for young children (e.g., Bruner, Olver,
& Greenfield, 1966; Cuisenaire & Gattegno, 1953;
Dienes, 1961). In support of this, studies have
shown improved mathematical performance for
children taught using concrete models or manipula-
tives (e.g., Fuson & Briars, 1990; see Sowell, 1989,
for a review). An alternative view is that children
construct an understanding of complex symbols via
experiences with symbols themselves via logico-
mathematical processes (e.g., Chandler & Kamii,
2009; Kamii, 1986). Even theories of grounded cog-
nition admit a role for chaining from one symbolic

representation to another (e.g., Lakoff & Nunez,
2000). That is, once the building blocks of a symbol
system have been grounded in direct experience
(e.g., the meaning of single digits), more complex
symbolic forms can be understood with reference to
these building blocks, rather than grounding every
instance in a concrete experience. In line with this
view, some researchers have claimed concrete mod-
els are either ineffective or detrimental (Ball, 1992;
Kaminski, Sloutsky, & Heckler, 2008; McNeil, Uttal,
Jarvin, & Sternberg, 2009). If early knowledge is
based on intuitive awareness of the statistical regu-
larities across written and spoken number names,
then training that amplifies the regularities in these
symbol systems could be the best approach to
improving explicit understanding of place value.
Alternatively, training that connects children’s early
and not completely correct knowledge of place
value to its conceptual underpinnings might be
more effective, and such training could benefit from
bridging via concrete representations, such as base-
10 blocks. Accordingly, our training compared both
kinds of approaches.

The lessons were presented by a highly trained
experimenter over a period of 2 weeks, for 225 min
of instruction in total. Children worked in groups of
four students but each had his or her own set of
materials. The lesson content was identical for both
groups except that children in the base-10 blocks
group worked out the problems using individual sets
of base-10 blocks (15-ones, 15-tens, 15-hundreds, and
2-thousands blocks). They also received vinyl mats
(World Class Learning Materials, Chandler, NC) that
were divided into four sections by place (thousands,
hundreds, tens, and ones). The sections were
arranged horizontally, from thousands on the left to
ones on the right, thereby mirroring the order of
written multidigit numerals. Also, each section was
illustrated with a line drawing of the corresponding
base-10 block. Children in the symbols-only condi-
tion were given plain white note cards with a single
hand-written numeral ranging from zero to nine to
complete parallel activities. For example, if children
in the base-10 blocks group were asked to represent
a multidigit numeral using blocks, children in the
symbols-only group did so using their digit cards.

Results and Discussion

Children’s combined pretest scores were equiva-
lent across conditions (Msymbols-only = .68, Mblocks =
.69), t(70) = .03, p = .98, two-tailed, so children
entered the study at the same level of place value
knowledge. At pretest, children in both groups
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performed significantly above chance on the numer-
als items, but not on blocks or dots, on the Which is
x? task and the opposite was true for the Which is
more? task. (see Table 7). Both groups performed
significantly above chance on average following
training: symbols-only (M = 0.62, SD = .10),
t(35) = 7.29, p < .001, and blocks (M = 0.54,
SD = .10), t(35) = 2.36, p = .02, and within some
tasks and conditions, (see Table 7). However, pair-
wise comparisons indicated that the gains from pre-
to posttest were not significant for any task in
either condition (all ps > .05). Indeed, for blocks
children, scores in the numerals condition actually
dropped from pretest (M = 0.58, SD = .07) to post-
test (M = 0.50, SD = .06), t(11) = 4.28, p = .001.

To further examine the differential effects of train-
ing, we submitted children’s posttest scores to a
repeated measures ANOVA with task (Which is x?
vs. Which is more?) and condition (numerals, dots,
and blocks) as within-subject variables and training
condition (blocks vs. symbols-only) as the between-
subjects factor. There was a significant main effect
of task, F(1, 70) = 212.37, p < .001, g2

p = .75, such
that Which is more? posttest scores were higher
(Mwhich-is-x? = .51, SD = .13; Mwhich-is-more? = .57,
SD = .09), t(23) = 1.80, p = .04, one-tailed; however,
there were no other main effects or interactions.
Thus, it appeared that neither training condition led
to improved scores.

If we focus on only the items that were particu-
larly challenging, a different pattern emerged. We
carried out a second ANOVA focusing on the
numerals items for which children originally per-
formed at chance because we wanted to determine
whether training addressed the particular limita-
tions children exhibited on school entry. The result-
ing 27 items (13 Which is more? and 14 Which is x?)
were submitted to a repeated measures ANOVA
with test type (pre vs. post) as the within-subject
variable and training condition (blocks vs. symbols-
only) as the between-subjects variable. First, there
was a significant main effect of test, F(1, 22) = 7.62,
MSE = .008, p = .01, g2

p = .26, that reflected overall
improvement after training (Mpretest = .49, SD = .11;
Mposttest = .56, SD = .12), t(23) = 2.55, p = .009, Bon-
ferroni, one-tailed. But there also was a Test 9 Con-
dition interaction, F(1, 22) = 5.03, MSE = .04,
p = .01, g2

p = .19, in favor of the symbols-only train-
ing group (Mpretest = .48, SD = .14; Mposttest = .61,
SD = .09). In short, there was a significant increase
from pre- to posttest for the symbols-only group,
t(11) = 4.24, p = .001, but not for those who
received training with blocks (Mpretest = .50,
SD = .10; Mposttest = .51, SD = .13), t(11) = .32, p = T
ab
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.75. Thus, there was evidence that symbols-only
training led to improvement on certain items, but
no evidence that training with base-10 blocks was
helpful.

One could argue that these training effects are
due to improvement that would have occurred over
the period of the study even without training. It
seems unlikely that the degree of improvement we
observed could naturally occur over a 3-week per-
iod, given that it took children roughly 3 years to
progress from emergent competence to mastery in
Experiment 1. Also, if the results were due to matu-
ration or incidental learning, we should not obtain
different patterns of improvement for the two train-
ing conditions. Still, without a no-training compari-
son group, it is impossible to rule out this
interpretation entirely.

General Discussion

Both research and the observations of teachers indi-
cate that place-value notation is difficult for school
age children to learn. Yet the present results indi-
cate that preschool children know enough about
how large numbers are written to map them to
their spoken names and to judge relative magni-
tudes. To do this, they must know—at the very
least—that place matters: The same digit represents
more when it is to the left then to when it to the
right in a string of digits (e.g., Which is more: 123
vs. 321?), numbers are read left to right (e.g., Which
is two-hundred-sixty-seven? 267 vs. 627?), and the
number of digits is related to both magnitude (e.g.,
Which is more: 101 vs. 99?) and identity (e.g.,
Which is four-hundred-two: 402 vs. 42?). Children’s
ability to distinguish pairs such as 64 versus 604
and 21 versus 201 also suggests they know some-
thing about zeros as place holders. This is certainly
a much more extensive conceptual foundation than
previously believed.

Because most children in the study had not
received formal schooling with multidigit numbers,
it seems likely they developed this knowledge from
being in a literate world with written numbers.
Their encounters with written multidigit numerals,
coupled with knowledge of single-digit number
meanings, exposure to spoken multidigit number
names, and experience with a rough ordering of
multidigit numerals (e.g., as one could observe in
street addresses), could reveal several statistically
regular patterns in this representational system—
regularities children could use to make inferences
and educated guesses about the meanings of multi-

digit numerals. We know children glean such
regularities from the broad stream of language input
and use these regularities to discern word bound-
aries (Saffran, Aslin, & Newport, 1996), word mean-
ing (Smith & Yu, 2008), grammatical categories
(Mintz, Newport, & Bever, 2002), and letter–sound
associations (Treiman & Kessler, 2006). For example,
Mintz et al. (2002) discovered that the co-occurrence
patterns of words in speech to children supplied
enough regularity to support discrimination of
nouns and verbs. As these studies demonstrate chil-
dren are sensitive to regularities in written words
and speech, we should not be surprised if they also
are aware of the regularities in written numerals.

This early competence, however, is far from a
deep understanding of multidigit number meaning.
There is clearly still much for children to learn
about place value in school, and concrete models
may play a role in this learning. However, the pres-
ent results indicate that the potential correspon-
dence between the different sized blocks and place
value as realized in spoken number names is not
obvious to young preschool children, because they
performed relatively poorly in the blocks condi-
tions. Moreover, children consistently performed
best in the numerals conditions and tasks that
required numeral-to-array mapping. This suggests
the intriguing possibility that understanding physi-
cal place value blocks requires some prior (albeit
incomplete) understanding of the written place
value system. Manipulatives thus might not be the
entry point for instruction, but better used to aug-
ment early understanding, perhaps as a way of
making the knowledge latent in the writing system
explicit. In contrast, the symbolic representations to
which children have been exposed—and about
which they have acquired some knowledge—may
be the better starting point for explicit instruction.

Consistent with this idea, in Experiment 3, we
found that instruction with written symbols led to
gains, but not so with base-10 blocks. This adds to
the evidence that base-10 blocks are not particu-
larly transparent to children and also lends
support to the view that experience with symbols
themselves is an important, if not sole inroad to
understanding place value (Kamii, 1986). More-
over, whereas blocks training did lead to improve-
ment on blocks outcome measures, it is
remarkable that symbols-only instruction also led
to significant improvement on these tasks. This
suggests that symbols may be an inroad for
understanding base-10 blocks as much or more
than base-10 blocks are an inroad to understand-
ing written symbols.
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Vygotsky argued that conceptual development is
supported and transformed by the internalization
of cultural tools, such as language. Experiments 1
and 2 suggest that this process begins early, before
formal training as preschool children appear to
have developed an understanding of the symbols
for multidigit numerals via everyday experiences
with the symbols themselves. These experiences
with written numbers may also affect their under-
standing of meanings of large numbers and their
ability to interpret other representational systems
such as base-10 blocks and dots, as measured in the
Which is x? task. Although this notion may seem
antithetical to theories of embodied cognition,
which hold that symbols are understood via
grounding in perceptual experience, cultural tools
have factored prominently in these theories as well
(Clark, 1997; Lakoff & Nunez, 2000). For example,
Clark (1997) argued that cultural tools, such as
numerals, provide scaffolding that offloads task
demands and preserves cognitive resources (e.g.,
attention, working memory, etc.), thereby allowing
learners to function at a higher level and, perhaps,
achieve new insights. On this view, one could say
young children use partial knowledge of multidigit
numerals to discover the meaning of large quanti-
ties and, thus, bootstrap their way into competence
with this symbol system. Experiences with concrete
models may depend on this prior knowledge but
also feedback on and support a deeper understand-
ing of the conceptual underpinnings of place value.
We see this as a critical question for future research.

Regarding subsequent development of place
value, one problem with the existing evidence is
that place value is often confounded with other
concepts and skills. For example, children’s accu-
racy in multidigit calculation undergoes major
improvement from 7 to 11 years of age. The fact
that children have difficulty with carrying, borrow-
ing, zeroes, and so forth has been taken as evidence
that they lack place value concepts (Jesson, 1983).
This may be true because these operations require
place value knowledge, but they also require
knowledge of algorithms themselves, careful execu-
tion of these algorithms, accurate retrieval of num-
ber facts, and much more. Thus, when children fail
to solve multidigit calculation problems, it is not
correct to conclude that they lack place value con-
cepts as there are many potential sources of this
failure. Indeed, research on addition difficulty has
demonstrated that problem size (i.e., magnitude of
numbers to be added) accounts for more variance
than whether or not carrying is required. (Klein
et al., 2010). Similarly, children’s inability to

represent quantities using base-10 blocks could
have more to do with their inability to understand
these blocks than it does with their understanding
of the way written numerals represent place value.

This study tells us only that young children are
developing knowledge about multidigit numbers. It
does not provide fine-grained information about
the precise nature of that knowledge and its limita-
tions. It also does not identify the origins of this
knowledge and the kinds of experiences on which
it depends. We have speculated about the streams
of input that may be most informative, but these
hypotheses are important topics for future research.
In addition to providing insight into the develop-
ment of symbolic ability, this study also informs
educational practice. The starting point for the
design of any instructional system requires know-
ing not just the outcome desired but also what chil-
dren already know, what they will bring—right or
wrong—to the instructional experience. The present
experiments show young children, prior to formal
instruction, have ideas about both spoken number
names and written multidigit numbers. The find-
ings point to a critical need to study this knowledge
in greater depth, to understand its strengths and
weaknesses, and to determine the best way for for-
mal instruction to make contact with and advance
that knowledge.
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