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Why do children learn nouns such as cup faster than dimensional adjectives
such as big? Most explanations of this phenomenon rely on prior knowledge of
the noun–adjective distinction or on the logical priority of nouns as the
arguments of predicates. In this article we examine an alternative account, one
which relies instead on properties of the semantic categories to be learned and
of the word-learning task itself. We isolate four such properties: The relative
size, the relative compactness, and the degree of overlap of the regions in
representational space associated with the categories, and the presence or
absence of lexical dimensions (what colour) in the linguistic context of a word.
In a set of �ve experiments, we trained a simple connectionist network to label
input objects in particular linguistic contexts. The network learned categories
resembling nouns with respect to the four properties faster than it learned
categories resembling adjectives.

Young children learn nouns more rapidly and with fewer errors than they
learn adjectives. The nouns that children so readily learn typically label
concrete things such as BLOCK1 and DOG. The adjectives that young
children learn with greater dif�culty label the perceptible properties of these
same objects, for example, RED and WET. Why are concrete nouns easier
for young children to learn than dimensional adjectives?

It is common in the study of cognitive development to explain such
differences in learning by positing domain-speci�c mechanisms dedicated to
that learning Thus, one might explain the noun advantage by looking for
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conceptual structures that speci�cally constrain or promote the learning of
nouns and the lack of such speci�c structures for adjectives. In this article, we
pursue an alternate idea. We propose that common nouns and dimensional
adjectives are initially acquired by the very same processes in the very same
way. But, we argue, many mundane factors conspire to make names for
common things more easily learned than labels for the properties of those
things. We test our account by examining how a general category learning
device, a multilayer feed-forward connectionist network, learns concrete
nouns and dimensional adjectives.

THE PHENOMENON

Three kinds of evidence point to the initial priority of names for things over
labels for the attributes of those same things. The �rst concerns the kinds of
words that comprise early productive vocabularies. Nouns dominate;
dimensional adjectives are rare or nonexistent. For example, in Stern’s diary
study of the acquisition of English (Gentner, 1978), 78% of the words
produced at 20 months were nouns whereas none were adjectives. Similarly,
in Nelson’s (1973) study of 18 children learning English, fewer than 7% of
the �rst 50 words were adjectives. The priority of nouns over adjectives in
early vocabularies is evident in other languages as well. In Dromi’s (1987)
study of one child learning Hebrew, only 4 of the �rst 337 words were
adjectives. In a longitudinal study of the acquisition of Spanish by 328
children, Jackson-Maldonado, Thal, Marchman, Bates, and Gutierrez-
Clellen (1993) found only one adjective among the 88 most common words.
The �nding that adjectives are infrequent in early vocabularies is
remarkable given that common dimensional adjectives such as size and
colour terms are among the most frequently used words in adult language.

The second class of evidence concerns studies of arti�cial word learning.
In this commonly used method, experimenters present a novel object to a
child and label it with a novel word (e.g. “this is a dax”). Children’s
interpretation of the word is measured by the kinds of other objects to which
they generalise the newly learned label. Considerable evidence indicates
that by 18 months (and quite possibly before), children interpret novel
nouns as referring to taxonomic categories (Markman, 1989; Waxman,
1994). Further, the evidence suggests that children remember what they
have learned over several days and weeks (Woodward, Markman, &
Fitzsimmons, 1994). There have been a number of attempts to use these
methods to teach novel adjectives. In these studies, the novel word is placed
in an adjectival context (e.g. “this is a daxy one”) or is explicitly contrasted
with a known adjective (e.g. “this is ecru, not red”). Learning in these
instances has proved modest at best, even in children as old as 36 months
(Au & Laframboise, 1990; Au & Markman, 1987; Carey, 1978; Smith, Jones,
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& Landau, 1992; Taylor & Gelman, 1988). Cross-linguistic studies of
arti�cial word learning also suggest that names for concrete things are
special in early language learning (Imai & Gentner, 1993; Waxman, 1994), in
that there are considerable similarities in the nature of children’s noun
extensions across languages and considerable variability across (and within)
languages in young children’s interpretation of novel adjectives. Other
evidence from children learning English suggests that the initial meanings of
dimensional terms may be highly context speci�c (Keil & Carroll, 1980). In
sum, whereas names for things appear to be “fast mapped” (Carey, 1982) to
potential categories, the extension of a novel adjective appears more slowly
and more variably determined.

The third class of evidence concerns children’s errors with nominal and
adjectival meanings. There are extensive literatures in both areas although
they are dif�cult to compare because of vastly different methods, ages of
subjects, and empirical questions asked. These differences derive directly
from the noun advantage over adjectives. The key question for researchers
who study early noun acquisition is how it is that children learn so many
nouns so rapidly and with so few errors. The only errors consistently studied
in this literature are the overextension errors typically noticed at about the
time productive vocabulary �rst begins to accelerate. However, there is a
debate as to whether these errors are category errors. Instead, these
overextensions (for example, calling a zebra “doggy”) may re�ect pragmatic
strategies or retrieval errors (Gershkoff-Stowe & Smith, submitted;
Huttenlocher, 1974). Consistent with this idea is the rarity of overextensions
in comprehension (see, for example, Naigles & Gelman, 1995).

In contrast, the key question for researchers who study the acquisition of
dimensional adjectives is why they are so dif�cult to learn. The central
phenomena are comprehension errors. Long after children begin to use
dimensional words, when they are as old as three, four or even �ve years,
their interpretations of dimensional adjectives are still errorful. This
literature is replete with examples of both within- and between-dimension
errors, interpreting big to mean TALL (Maratsos, 1988), big to mean
BRIGHT (Carey, 1978, 1982), dark to mean LOUD (Smith & Sera, 1992),
and blue to mean GREEN (Backscheider & Shatz, 1993). Although
plentiful, these errors are constrained. They consist of confusions within the
semantic domain of dimensional terms. That is, children may confuse dark
and loud but they do not confuse dark and room. The category speci�city of
these errors means that at the same time children are rapidly learning nouns
and commonly misinterpreting adjectives, they have some idea that nouns
and adjectives span different categories of meaning.

In sum, the phenomena to be explained are: (1) why common nouns are
acquired by young children earlier, more rapidly, and with fewer errors than
are dimensional adjectives, and (2) how, during the protracted course of
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learning dimensional adjectives, young children seem to recognise that the
dimensional adjectives comprise a class.

RATIONALE FOR A SIMILARITY-BASED
APPROACH

One way of construing the problem is in terms of category learning. Why are
common noun categories more easily learned than common adjective
categories?

Several proposals have been offered suggesting a foundational conceptual
distinction between objects and their attributes. For example, Gentner
(1978), Maratsos (1988), and Macnamara (1982) have all suggested that
nouns are logically prior. They point out that predicates presuppose
arguments but that the reverse is not true. The suggestion, then, is that
children need not understand shaggy to �gure out what dog means from
examples like the dog is shaggy, but must know dog to �gure out shaggy from
the same sentence. Similarly, Markman (1989; see also, Carey, 1994)
proposed that children’s initial hypotheses about word meanings adhere to a
“whole-object principle”—that children assume that novel labels refer to
individual whole objects rather than to their component properties or to
collections of objects. Thus, by this account, children’s initial hypotheses
about meanings are noun-like. Although these proposals are probably
somewhat correct, they seriously underspecify the processes through which
knowledge about the differences between nouns and adjectives is
instantiated or acquired.

We seek such speci�cation in a similarity-based account. Our idea is that
the noun advantage and an initial segregation of nouns and adjectives as
distinct classes of words is the result of the most general and ordinary
processes of associative learning. There are two arguments for this approach
which we �nd compelling. First, whatever else children know or believe,
similarity-based associative learning is part of their biology and thus a good
place to begin looking for a mechanistic account. Second, similarity-based
learning would seem crucial at the front-end when children know no
language. At this point, children learn many words by ostensive de�nition
(Mervis, 1987). Parents point to an object and say, for example, “that’s a
dog” or “that’s big”. This associative task of mapping words to perceptible
properties would seem to be the very same for the learning of dimensional
adjectives as for the learning of nouns. Even if the child possessed some
pre-existing conceptual distinction between objects and their properties, the
child could not use that knowledge at this stage because the child has no
words and thus no knowledge of the syntactic frames that would distinguish
whether a novel word is a noun or an adjective. In the beginning, the young
child can only associate novel labels with the properties of things so labelled.
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Doing so will yield a representation of dog as things with DOG properties
and a representation of wet as things with WET properties. While
incomplete, such meanings are in fact on the right track.

Given these assumptions, we ask: Why are common nouns learned more
readily than common adjectives?

Differences in Similarity Structure Between Nouns
and Adjectives

Previous researchers have pointed to three kinds of difference between
common noun and dimensional adjective categories.

Many Vs. Few Similarities

Gentner and Rattermann (1991), Markman (1989), Medin and Ortony
(1989), and Rosch (1973a) have all argued that common nouns label objects
that are similar across many inter-related and correlated properties. In
contrast, dimensional adjectives label objects that are alike on only one
property. This difference between nouns and adjectives has important
conceptual consequences (see especially Markman, 1989). For example,
knowing that an object is a bird allows predictions about many different
properties of the object, but knowing that an object is a member of the
category WHITE-THINGS supports only predictions about the object’s
colour.

This difference also has important implications for similarity-based
learning, as illustrated in Fig. 1. This �gure represents the extensions of
idealised nouns and adjectives as regions in a multidimensional space of all
possible objects. The relevant spaces are hyperspaces of many dimensions,
all of those along which noun and adjective meanings vary, but for ease of
illustration we con�ne ourselves to three dimensions. For example, the
dimensions shown could represent SIZE, SMOOTHNESS, and
SHININESS. Each of the outlined regions within the large cube represents a
hypothetical category associated with a single word, and instances of the
category would be points within the region. As can be seen in the �gure,
categories organised by many dimensional similarities (cubes with thick
outlines) are small and compactly shaped relative to those that are organised
by similarity on just one property. Thus, the idealised noun is uniformly and
closely bounded in all directions. It is a hypercube or hypersphere. In
contrast, members of an adjective category are tightly constrained in only
one direction (the relevant dimension) but extend inde�nitely in all others.
The idealised dimensional-adjective category thus may be thought of as a
“hyperslab”. Further, the volume of idealised noun categories, compact in
all dimensional directions, is relatively small whereas the volume of
adjective categories, extending inde�nitely in all directions but one, is great.
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FIG. 1. Typical noun and adjective categories. Only three dimensions from the set of
dimensions distinguishing the categories are shown. Noun categories appear in thick outline,
adjective categories in thin outline.

Given ordinary ideas about similarity and generalisation, these
differences clearly favour nouns. The within-category similarity is greater
for the nouns than the adjectives in Fig. 1. Further, for nouns, generalisation
can be nonselective in all directions, but for adjectives generalisation must
be selectively inhibited in one direction. Learning about adjectives but not
nouns thus requires discovering and selectively attending to one relevant
direction in the multi-dimensional space.

Category Overlap

Nouns and adjectives also differ in the relatedness of one category to
another. Common nouns all classify objects at one level (Rosch, 1973a). An
object is a dog or a house or a watch or a car or a leaf. Thus, the question what
is it? is answerable by one basic noun. Markman (1989) incorporated this
notion in her proposal that children adhere to a mutual exclusivity
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FIG. 2. Noun categories. Only three dimensions from the hyperspace of possible dimensions
are shown. Noun categories tend to be small and compact and not to overlap with one another.

assumption in early word learning. Although this idea of a one-object,
one-name rule is imperfect and complicated by a hierarchical taxonomy and
synonyms, it also captures something quite real about the way common
nouns are commonly used (Clark, 1973; Markman, 1989; Markman &
Hutchinson, 1984; Mervis, 1987, Mervis, Mervis, Johnson, & Bertand, 1992;
Rosch, 1973a). Dimensional adjectives present a markedly different
structure. They are (typically) mutually exclusive within a dimension but
overlap completely across dimensions. Objects in the category BIG may also
be in the categories WET and FURRY.

An idealisation of this difference between common nouns and
dimensional adjectives is depicted in Figs. 2 and 3. Relatively small noun
categories �ll all reaches of the space but rarely overlap with one another. In
contrast, the extensions of dimensional adjectives create a dense gridwork of
overlapping slabs that cut through the space in multiple directions as
illustrated. Again, under the ordinary assumptions of similarity-based
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FIG. 3. Adjective categories. Only three dimensions are shown. Adjective categories tend to
be large and elongated and to overlap with one another.

learning, these differences in category structure favour nouns: Between-
category similarity among nouns is minimal but between-category similarity
among adjectives is great.

Linguistic Associations

Nouns and adjectives also differ in their association with the linguistic
form of questions about objects. Different words, for example what is it?,
versus what colour is it? are used to ask about object categories and object
properties. Dimensional adjectives also differ among themselves in this
regard: What colour is it?, asks for a colour word as an answer; how does it
feel? asks for a description of texture. Backscheider and Shatz (1993) have
shown that young children are sensitive to these associations between
questions and the class of possible answers prior to their understanding of
the meanings of the individual words. Thus, in learning common nouns and
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adjectives, learners do not just map objects to words but they also map
linguistic inputs to linguistic outputs.

It is not immediately clear whether these word-to-word associations
favour nouns or adjectives. However, given the overlap among the
to-be-learned categories, we can be certain that they are crucial to learning.
A big, red, furry dog is a member of the category BIG, the category RED,
the category FURRY, and the category DOG. It is the linguistic input, the
question “what is it?” or “what colour is it?”, that speci�es the relevant class
of linguistic outputs. These word-to-word maps partition all the categories
that the child is learning into larger proto-syntactic categories—into “noun
categories”, “colour categories”, “size categories”, and “texture categories”.
In stages of incomplete learning, do these word-to-word maps also create a
distinction between nouns and adjectives such that adjectives are confused
across dimensions but are not confused with nouns?

In what follows, we demonstrate that a simple associative device that
approaches the task of learning about nouns and adjectives in the very same
way will none the less show a noun advantage and also the pattern of
within-category confusions shown by children. In addition, we separately
investigate the roles of category shape, volume, overlap, and word–word
associations in forming this developmental trajectory.

A CONNECTIONIST CATEGORISER

To test our hypothesis that the noun advantage in early acquisition derives
from the associative structure of the learning task, we used the most
common similarity-based learning procedure in the literature—a three-layer
connectionist network trained with back-propagation. Such a general
learning device embodies no prior knowledge about differences between
nouns and adjectives, and learning is purely associationist and error-driven.

As in several other recent modelling studies (Plunkett, Sinha, Møller, &
Strandsby, 1992; Schyns, 1992), we investigate the behaviour of a simple
connectionist network that is trained to label a set of patterns representing
perceptual inputs to the system. The goal in these studies is to show how the
facts of lexical development emerge from the interaction between the
learning device and the regularities inherent in the input patterns. In our
case, the relevant facts concern the relative ease of learning nouns and
adjectives, and the regularities in the patterns concern differences in the way
noun and adjective categories carve up the space of input dimensions and
co-occur with particular linguistic contexts.

The main difference between our network and other simple connectionist
models is our use of a modi�ed form of back-propagation. Back-propagation
is suitable in that early word learning in children is “supervised”. Adults ask
children questions about objects (e.g. “what is that?”, “what colour is that?”)
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and they provide feedback (e.g. “that’s not a dog; it’s a horse”) (Callanan,
1990; Mervis, 1987; Snow, 1977; Wood, 1980). Supervision for categorisation
tasks such as our word-learning task, as typically realised in connectionist
networks, however, is psychologically unlikely. If separate output units
represent the different category responses, standard back-propagation
changes the connection weights on each learning trial in a way that
encourages the correct response and discourages all other potential
responses. This is like the parent saying to the child, “This is a dog, not a
plate, not a cat, not an apple, not a house . . .” Parents do not do this but
instead explicitly reinforce correct answers (“yes, that’s a doggy”) and
provide negative feedback only when the child explicitly gives the wrong
answer (“that’s not a doggy; it’s a horse”).

This form of back-propagation is also inappropriate in the present case
because in the combined task of naming objects and labelling their
attributes, possible responses are not just right or wrong. There are kinds
and degrees of wrongness. Consider a big, black, wet dog and the question
“what colour is it?”. The answers “dog” and “red” are both wrong. However,
it seems unlikely that parents would respond to these errors in the same way.
A toddler who answers the question “what colour is it?” by correctly naming
the dog “dog” seems likely to hear a parental response of “yes, it’s a dog, a
black dog”. A toddler who answers the same question by saying “red” is
likely to hear, instead, a parental response of the sort “it’s not red, it’s black”.

Accordingly, we modi�ed the back-propagation algorithm to �t these
assumptions about the kinds of feedback provided by parents. Brie�y, we
provided targets only for a limited number of output words, and we
distinguished the kinds of incorrect errors by using distinct targets for them.
We now provide a detailed description of the network and the learning rule.

The Network Architecture

Figure 4 shows the network architecture. Each thin arrow represents
complete connectivity between two layers of processing units. The network
is designed to take objects and a linguistic context as inputs and to produce a
noun or adjective as output.

Inputs to the network are presented to two layers of processing units, one
for the representation of the object itself and one for a linguistic context
corresponding to a question the network is asked. Input objects consist of
patterns of activation representing a perceptually present object in terms of
a set of sensory dimensions. For the simulations discussed in this article, the
inputs are speci�ed in terms of four or �ve dimensions. We require that the
network learn to associate points along each dimension with particular
words, so the simplest possible representation of a dimension, that is, a single
unit, is excluded because it would only permit the association to different
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FIG. 4. The network. Each small circle is a processing unit, and each rectangle a layer of
processing units, unconnected to each other. Arrows represent complete connectivity between
the units in two layers. A possible input pattern and network response to it are shown, the
degree of shading of each unit representing its activation level. The small squares at the top of
the �gure indicate the two targets which the network receives for this pattern, one for the
correct response and one for an incorrect output above the network’s response threshold.

degrees of the dimension as a whole with each word. Therefore, each
dimension takes the form of a group of units in the input layer of the
network. That is, input to the network along a given dimension consists of a
vector of numbers, each between the minimum and maximum activation
values of the units in the input layer of the network. There are several ways
to represent dimensional input in the form of a vector, varying in the extent
to which they make explicit the ordering of points along the dimension. At
one extreme is a completely localised encoding, in which each dimensional
vector contains one maximum value and the remainder of the numbers take
on the minimum value. This form of encoding completely obscures ordering
along the dimension because there is no correlation between the numbers in
different positions in the vector (or the activations of units in each dimension
group). At the other extreme is a “thermometer” encoding (Harnad,
Hanson, & Lubin, 1991). In a thermometer representation, each of the
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2We have no reason to believe, however, that the conclusions we reach will not generalise to
other representational schemes. An alternative, for example, is a variant of localised encoding
in which units on either side of the most highly activated unit are also activated, in inverse
proportion to their distance from the activated unit. A version of the present network using such
a scheme trained on the data generated for Experiment 3 given later exhibited the same
advantage for compact over elongated categories as was found with thermometer encoding.

3Increasing the number of units in the hidden layer of the network both speeds up
performance and leads to improvement in the asymptotic level of performance.

positions in the vector corresponds to a point along a scale, and the value to
be encoded normally falls between two of the positions. All of those
positions to the “right” of this point take on their minimum values, the �rst
position to the “left” of this point takes on an intermediate value, and all of
the other leftward positions take on their maximum values.

In this article, we con�ne ourselves to thermometer representations.2 In
the networks used in the experiments reported here, each dimension is
represented by 12 units which have maximum activations of 1 and minimum
activations of 0. So in the network, dimensional values of 3.3 and 8.8 along
the scale with maximum value of 12 would be represented as the patterns
[1, 1, 1, .3, 0, 0, 0, 0, 0, 0, 0, 0] and [1, 1, 1, 1, 1, 1, 1, 1, .8, 0, 0, 0]. Figure 4
illustrates a possible set of activations along each of the four sensory
dimensions for an input object.

The linguistic context input consists of a question of the form what size is
it?, what colour is it?, or what is it?, each question represented by a separate
unit in the linguistic context layer of the network. (Four units are shown in
Fig. 4.) It is important to note that, because the network is given no actual
syntactic context, the noun context (what is it?) is indistinguishable from the
adjective contexts (what colour is it?, etc.) at the start of training. In terms of
the network’s architecture, there are just several equally different linguistic
context inputs that might be viewed as corresponding to noun, colour, size,
and texture. There is no hierarchical organisation of the adjective terms in
the architecture; that is, there is nothing that groups the adjectives as a class
in opposition to the nouns.

Critically, from the perspective of the network, there is also no distinction
between the input activation that corresponds to the object and that which
corresponds to the question. From the network’s point of view, there is just
one input vector of 66 numbers jointly specifying an event in the world in
terms of the �ve perceptual dimensions and the linguistic context input that
co-occurs with the presentation of the object.

The hidden layer of the network compresses the input patterns into a
smaller set of units, 15 to 24 units in the experiments we report here.3 Thus, at
this level, the system no longer has direct access to the input dimensions.
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This is an important aspect of the architecture and an important theoretical
claim. It means that input dimensions that are distinct at input are not (at
least not without learning) represented separately. This aspect of the
architecture is based on considerable research indicating that young children
have dif�culty attending selectively to individual dimensions (Aslin &
Smith, 1988) and on our past use of this architecture to model developmental
changes in selective attention to dimensions (Gasser & Smith, 1991; Smith,
1993). We will discuss more fully the wider implications of this aspect of the
network in the General Discussion.

The output layer consists of a single unit for each adjective and noun. A
1 1 activation on an output unit represents the network’s labelling the input
object with the corresponding word. A 2 1 activation represents the
network’s decision that the corresponding word is inappropriate for the
input object, and a 0 activation represents an intermediate response, one
that might be made if an object is described by the category but that is not an
appropriate answer to the linguistic input question, for example, if “red”
were the response to the question “what is it?” for a red dog.

The Learning Rule

The speci�c learning rule used operates as follows. During training, a target
is associated with each input pattern; this target represents the appropriate
response to the input. In ordinary back-propagation, each output unit
receives a target on each trial. But, as noted previously, this is an implausible
procedure, as it means that all possible responses which are not appropriate
are punished. Further, as noted earlier, not all wrong answers are wrong in
the same way and unlikely to be responded to the same way by parents.
Accordingly, we give the network feedback for only two sorts of words, the
correct word and any incorrect words to which the network has made a
signi�cant response. We de�ned a “response threshold” for the word units,
0.05 in all of the experiments reported on here; only activations above this
threshold are treated as overt responses for which feedback is possible.
Further, the target for these explicit errors depends on the input as
follows.

1. The target for a correct response is 1 1.
2. For a response that is not a correct label for the input object under any

circumstances (e.g. “small” for a large, red object), the target for the
corresponding output unit is 2 1.

3. For a response that would be a correct label for the input object if it
matched the lexical dimension input (e.g. “large” for a large, red object
when the input question is “what colour is it?”), the target for the
corresponding output unit is 0.
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TABLE 1
Experiment 1: Ranges of Values on Perceptual Dimensions for �ve Input Objects

Perceptual Dimensions

Noun 1 0.9 , v1 , 1 0 , v2 , 0.1 0 , v3 , 0.1 0 , v4 , 0.1 0 , v5 , 0.1
Noun 2 0 , v1 , 0.1 0 , v2 , 0.1 0.4 , v3 , 0.5 0.4 , v4 , 0.5 0 , v5 , 0.1
Adj 1 any any any 0.8 , v4 , 1 any
Adj 2 0 , v1 , 0.2 any any any any
Adj 3 0.8 , v1 , 1 any any any any

v1, etc. represent the values on the �ve dimensions; each range is expressed in terms of
proportions of the distance from the minimum to the maximum value.

EXPERIMENTS

Experiment 1: Nouns Vs. Adjectives in General

In Experiment 1, we investigate how this simple three-layer network
simultaneously learns many categories organised to be like nouns and to be
like adjectives with respect to the properties of shape, volume, overlap, and
number of different categories. The central question is whether there will be
a noun advantage early in learning and whether, prior to complete learning,
the network will show partial knowledge that nouns and adjectives are
distinct classes of words.

Stimuli

The input to the network consisted of an object described on �ve
perceptual dimensions and the question accompanying the object. The input
objects were instances of 30 possible categories. Each input object had a
value for each of the �ve perceptual dimensions, and each category was
de�ned in terms of the range of values that its instances could take along
each of the dimensions. Twenty of these categories were organised to be
noun-like and ten were organised to be adjective-like. Each noun was
de�ned in terms of a range of one-tenth of the possible values along each of
the �ve input sensory dimensions. Each adjective category was de�ned in
terms of a range of one-�fth of the possible values along one of the input
dimensions and any value along the other four. Thus, each noun spanned 1�10

3 1�10 3 1�10 3 1�10 3 1�10 5 0.00001 of the multidimensional space of all possible
categories, whereas each adjective spanned one-�fth of the space. Table 1
shows ranges of possible values on the �ve dimensions for two of the noun
and three of the adjective categories. Note that the noun categories may
overlap on one or more dimensions (dimensions 2 and 5 in the example
categories). No noun categories overlap completely, however. This is not so
for the adjective categories. In Table 1, adjective 1 overlaps with both
adjective 2 and 3 because it is possible to create an object which is an instance
of both adjective 1 and adjective 2 or both adjective 1 and adjective 3.
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4As we will see in subsequent experiments, the noun advantage in the network does not
depend on there being only two terms for each adjective dimension.

The ten adjective categories were organised into �ve lexical dimensions by
association with the speci�c input dimension whose values were constrained
within the adjective category and by association with a speci�c linguistic
context input, e.g. “what size is it?”. Thus the ten adjectives were structured
into �ve dimensions each with two contrasting terms.4 In Table 1, adjectives
2 and 3 belong to the same lexical dimension.

For each training instance, the inputs were generated as follows. First,
an output category was selected at random from the set of 30 possible
outputs (the 20 nouns and the 10 adjectives). The selection of the relevant
output determined the linguistic context input. Then for each of the �ve
perceptual dimensions, a possible value was picked at random consistent
with the selected output.

The linguistic context input consisted of the pattern representing a
question that would be appropriate for the selected category, each question
corresponding to a lexical dimension. For example, if the category was big,
the input unit representing what size is it? was turned on (that is, its output
was set to 1.0), and the other linguistic context units were turned off. If the
category was dog, the input unit representing what is it? was turned on, and
the other linguistic context units were turned off.

Because there was randomness in the selection of output categories and
corresponding input objects, because the input objects varied continuously,
and because the targets depended in part on the network’s response,
the network was never trained more than once on a particular input–target
pair.

Method

On each training trial, the network was presented with an input (object
plus linguistic context), generated as just described, and an appropriate
target on the output. The weights in the network, other than those feeding
output units for which no targets were available, were then adjusted
according to the back-propagation algorithm.

Following each presentation of 1000 input patterns the network was tested
on 500 novel inputs generated in the same fashion as the training patterns.
There are several options for evaluating the network’s performance. We
chose to look only at the output unit with the highest activation, unless this
unit’s activation was not above the response threshold, in which case the
network was viewed as not making any overt response at all. Our assumption
was that production processes not modeled in our network would force the
system to select one word over all of the candidates which might be
activated. Thus, only the most highly activated output unit was relevant. For
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FIG. 5. Experiment 1: Nouns vs. adjectives. Performance is the proportion of test items for
which the highest overt response was correct. Responses are averaged over 10 separate runs of
the network.

each test input, following activation of the network it was determined
whether the output unit with the highest activation was above the response
threshold and whether that unit corresponded to the appropriate word.
Performance for each category of word was measured as the proportion of
test trials for which this was true.

Results

Figure 5 shows the learning rates for adjectives and nouns in this
experiment. The data shown are averages over 10 runs with different initial
random weights on the network’s connections. The smaller and more
compactly shaped noun categories are learned much faster than the larger
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5For statistical tests here and in Experiments 2–5, we treated each run of the network as a
separate subject.

6An initial difference in learning but ultimately equal and near perfect learning of both nouns
and adjectives is achieved with larger hidden layers.

TABLE 2
Experiment 1: Within- and Between-Part-of-Speech Errors

0 Training Patterns 1000 Training Patterns

Incorrect output Noun Context Adj Context Noun Context Adj Context

Nouns 0.66 0.34 0.65 0.35
Adjectives 0.70 0.30 0.37 0.63

Figures represent the proportion of incorrect overt responses in different part-of-speech
categories.

and more slab-like adjective categories (P , 0.0015). Performance on the
nouns is close to perfect by the 2000th training trial. Performance on the
adjectives continues to improve, but never reaches the level of the nouns.6

We also asked whether in learning these categories, the network showed
any implicit knowledge of lexical categories. First, does the network develop
a distinction between nouns and adjectives as a class? Second, does the
network develop a distinction between different dimensional terms,
analogous to knowing, for example, that WET and DRY are attributes of
one kind and that ROUGH and SMOOTH are attributes of another kind?
These are important questions because children show clear evidence of the
�rst distinction in their early errors but not the second distinction (see Carey,
1994; Smith, 1984; Smith & Sera, 1992; but see Backscheider & Shatz,
1993).

To answer the �rst question, we de�ned “within-part-of-speech errors” as
the proportion of cases with an incorrect response (above threshold) for
which the response was the correct “part of speech” (adjective or noun).
Table 2 shows the proportion of within- and between-part-of-speech errors
at the start of learning and after 1000 training trials. At the start of learning
when the network knows nothing, the relative frequency of noun and
adjective responses (2:1) corresponds to the relative number of noun and
adjective output units (2:1) and is unrelated to the linguistic context input.
However, as learning progresses, the character of the error becomes
associated with the linguistic input that speci�es the class of possible
answers. After 1000 training trials, when the network still has not yet fully
acquired the adjective terms, the network shows implicit knowledge that all
the adjectives form a class.

To answer the second question, we de�ned “within-dimension errors” as
the proportion of cases in which adjective questions received incorrect
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adjective responses and the response was on the right dimension. Noun
questions and noun responses to adjective questions did not contribute to
this measure. At the start of training, such within-dimension errors were
rare, occurring 0.08 of the time. The frequency of within-dimension errors
increased with training, reaching a maximum of 0.23 of the time after 2000
trials. Thus the network shows little implicit knowledge of which terms refer
to attributes on the same dimension.

Discussion

The central result of this simulation is that a simple connectionist network
when simultaneously trained on adjective-like and noun-like categories
learns the nouns faster, just as children do. Yet this difference is not due to
any built-in preferences on the part of the network nor to any pre-training
representation of a difference between nouns and adjectives. It is due
entirely to the similarity structure inherent in the learning task—that is, to
the nature of the categories that the network learns and the linguistic input
that speci�es which of several classes of overlapping categories is the
relevant one. In brief, a learner can show a marked advantage for the
learning of one kind of category over another without any built-in distinction
between them. The developmental precedence of nouns over adjectives in
children thus need not derive from a priori conceptual distinctions, as
commonly assumed, but rather from quite general similarity-based learning
mechanisms.

During the course of learning, the network, like young children, also
exhibits a structured pattern of errors—dimensional terms are confused with
each other and not with nouns. This distinction emerges as a consequence of
simultaneously learning not a single adjective class but several different
adjective categories. The most likely possibility is that this is accomplished
by the rapid learning of noun categories. That is, what the network “really
knows” may essentially be that adjectives are “not nouns”. The implication
is that this may be all that young children know too (see Smith, 1995 for a
similar suggestion based on empirical evidence from children). The network
did not show strong learning of the connection between pairs of terms on a
single dimension. This is also consistent with the evidence from children.
With the exception of colour terms, between-dimension rather than
within-dimension confusions characterise children’s initial errors
(Backscheider & Shatz, 1993; Carey, 1994; Smith & Sera, 1992).

This experiment thus demonstrates the viability of a similarity-based
approach to the noun advantage in children’s early lexical acquisitions. In
the following experiments, we examine the speci�c contributions of the
volume and shape of category extensions, overlap and word–word
associations in creating the noun advantage by examining unnaturally
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structured classes of categories that differ only in their volume, shape,
overlap, or associations between linguistic context inputs and outputs.

Experiment 2: Category Volume

In this experiment, we investigate the role of volume differences. We create
small categories and large categories that are both like nouns in being
de�ned by similarities on many dimensions. We ask whether smaller
categories of this kind have an advantage over larger ones.

Stimuli and Method

Stimuli for this experiment were generated analogously to those in
Experiment 1. There were two types of categories, those which spanned
relatively wide regions of the space of all possible input objects and those
which spanned relatively narrow regions. Both the Small set and the Large
set contained 18 words. In the Small set, each word was de�ned in terms of a
range of one-sixth of the possible values along each input dimension. Thus
the extension of each of these categories covered 1�6 3 1�6 3 1�6 3 1�6 5 0.00077
of the space of possible inputs. In the Large set, each word was de�ned in
terms of a range of one-third of the possible values along each input
dimension, a total of 1�3 3 1�3 3 1�3 3 1�3 5 0.012 of the space of possible objects,
that is, 16 times the size of the region occupied by the extension of each of the
categories in the Small set. Note that the volumes of the two sets are closer
than in the �rst experiment. The Large and Small categories overlapped in
the space of all possible categories. Two linguistic context inputs were used
to signal the relevant kind of category, one for which the Large-volume
words were appropriate responses, the other for which the Small-volume
words were appropriate responses. Given the relatively simpler learning
task with fewer overlapping categories, we tested the network after every
500 training trials.

Results and discussion

Figure 6 shows the mean correct responses over 10 separate runs of the
network. As can be seen, outputs referring to Small categories are learned
faster than the ones referring to Large categories (P , 0.001). The difference
is smaller than in Experiment 1 probably because the ratio of Large-to-Small
volume is smaller: 16 to 1 in this experiment, but 216 to 1 in Experiment 1.

The network also readily learned the association between one linguistic
context input and the class of Large-volume outputs and between the other
linguistic input and the class of Small-volume outputs. As in Experiment 1,
we examined “within-part-of-speech error”; here, the Small-volume and
Large-volume categories represented the two parts of speech. At the start of
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FIG. 6. Experiment 2: Category volume. Performance is the proportion of test items for which
the highest overt response was correct. Responses are averaged over 10 separate runs of the
network.

learning, “within-part-of-speech” errors comprised (as expected by chance)
about half the errors for both Small-volume and Large-volume targets (0.50
of the errors given a Small-volume target and 0.45 of the errors given a
Large-volume target). After 1000 training trials, however, within-part-of-
speech errors predominated, 0.88 of all errors given a Large-volume target
and 0.81 of the errors given a Small-volume target. These results again
demonstrate the role of word–word associations in the network’s learning.

In sum, this experiment shows that differences in the volume of a category,
one of the differences that exists between common nouns and dimensional
adjectives, is suf�cient to create an advantage in learning. This is not an
unexpected result, given all that is known about the importance of
within-category similarity to similarity-based learning. But it is a result that
is consistent with the idea that developmental differences between the early
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acquisition of nouns and adjectives could derive from processes no
more complex than those embodied by a three-layer connectionist
network.

Experiment 3: Category Compactness

In this experiment, we investigate the effect of differences in the shape of
category extensions on learning when the volumes of the to-be-learned
categories do not vary. Recall that the shape or compactness of the category
concerns the number of dimensions (or directions in the space of all possible
objects) on which there is a restricted range of values within the category. In
order to determine how important compactness, independent of volume, is
for learning by a simple associative device, we contrasted compact noun-
like categories with less compact adjective-like categories of the same
volume.

Stimuli and Method

The stimuli were generated as in Experiments 1 and 2. The 16 less compact
“adjective like” categories were de�ned in terms of ranges of two-thirds,
two-thirds, one-third, and one-twelfth of the possible values along the four
input dimensions used in this experiment. That is, one input dimension, the
one for which the possible within-category range was one-twelfth of the
input dimension, was much more relevant than the other three in de�ning
the category. Each of the four dimensions played this role for four of the
adjectives. Each of the more compact noun-like categories was de�ned in
terms of a range of one-third of the possible values along each input
dimension. The extensions of both the noun-like and adjectives-like
categories encompassed the same volume (1�81 of the space). The noun-like
and adjective-like categories overlapped in the space. As in Experiment 2,
“noun-like” categories were associated with a linguistic context input
specifying noun targets and all the adjective-like categories were associated
with one linguistic input specifying adjective targets.

Results

Figure 7 shows the results of Experiment 3 over 10 runs of the network.
The noun-like categories that were organised by an equally restricted range
of variation on all four sensory dimensions were learned more rapidly than
the adjective-like categories in which the range of variation on some
dimensions was wide and on others narrow (P , 0.001). In other words,
evenly compact categories are more rapidly learned than elongated ones, a
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FIG. 7. Experiment 3: Category compactness. Performance is the proportion of test items for
which the highest overt response was correct. Responses are averaged over 10 separate runs of
the network.

difference that again favours the basic-level nouns children learn early over
the dimensional adjectives that they learn later. We also assessed the
association of noun and adjective outputs with the two different linguistic
inputs by measuring within- and between-category errors. At the start of
learning, within category errors were at chance; the proportions of all errors
(above threshold responses) that were within syntactic category were 0.45
and 0.53 for nouns and adjective respectively. After 2000 trials, the
proportions of within-category errors were 0.85 for both nouns and
adjectives. Given that the input speci�ed two categories, this result is not
surprising but it does demonstrate again the learning of word–word
associations and their potential role in generating structured patterns of
errors.
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Experiment 4: Linguistic Associations

In Experiment 1, and, we believe, in the labelling tasks faced by young
children in the world, noun and adjective categories differ in their volume,
compactness, and in their association with speci�c linguistic contexts. In this
fourth experiment, we ask how the association between lexical dimensions
in the input and the speci�c adjectives that comprise the output contribute to
the noun advantage. We do this by creating two classes of words whose
extensions did not differ in volume nor shape. Each category was organised
principally by variation along one input dimension. Four adjective-like
categories were de�ned by associating all categories organised by one input
dimension (e.g. colour or size) with the same linguistic context unit. Thus,
there were four adjective categories associated with four linguistic inputs
specifying the relevant object dimension. The “noun” categories were
de�ned by taking the very same categories (each organised by one input
dimension) and associating them with a single linguistic context input. Thus,
we ask whether it helps or hurts in learning the very same categories to have
linguistic inputs specifying subsets of outputs or to have no linguistic inputs
that specify subclasses of outputs. Because the linguistic context inputs in the
�rst case also specify the relevant dimension, we call them “lexical
dimensions”.

Stimuli and Method

As before, stimuli for this experiment were generated randomly, given the
constraints that de�ned each of the categories. As in Experiment 1,
adjectives were organised along lexical dimensions, speci�ed by the most
relevant input dimension and the linguistic context input. In this case, there
were four lexical dimensions, one each for the four input dimensions that
specify the presented objects.

Unlike in Experiment 1, however, the adjective and noun categories were
identical in every other way; in fact, the same set of 16 categories was used
for the 16 nouns as well as the 16 adjectives. For all categories a single
sensory dimension was most relevant; that is, the range of variation possible
along that dimension was considerably narrower than on the other three
dimensions. For example, one adjective category was de�ned in terms of
ranges spanning two-thirds, two-thirds, and one-third of three of the input
dimensions and one-twelfth of the relevant dimension, and one of the noun
categories was de�ned in exactly the same way. Whereas the noun and
adjective categories overlapped completely (since they were identical
categories), there was no overlap within the noun and adjective classes. This
is necessary for the condition with no linguistic context specifying the lexical
dimensions; without such linguistic input, it would be impossible to learn
overlapping categories. Thus in this experiment, the only factor
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FIG. 8. Experiment 4: Lexical dimensions. Performance is the proportion of test items for
which the highest overt response was correct. Responses are averaged over 10 separate runs of
the network.

distinguishing the two classes of outputs is the presence of linguistic contexts
associated with subsets of words and speci�c perceptual dimensions.

Results

Figure 8 shows the results of this experiment over 10 separate runs. There
is an advantage for words associated with speci�c lexical dimensions (P ,
0.001). Thus, rather than adding complexity to the learning task, linguistic
input dimensions, in the absence of category overlap, provide redundant
information about category identity that aids learning.

The network again readily formed two “syntactic” categories presumably
by associating the class of words for which there were no lexical dimensions
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in the linguistic context with the one linguistic context specifying that class.
At the start of learning, the network’s errors were distributed equally among
the noun-like set and adjective-like set of outputs; the proportion of within
class (above threshold) errors were 0.47 and 0.52 respectively. After 4000
trials, however, errors were predominantly from within the proper “part of
speech”; when the correct output was from the noun-like set, the network
erred by responding with another item from that set 0.82 of the time and
when the correct output was from the adjective-like set, the network erred
by responding with another item from that set 0.84 of the time. With these
non-overlapping categories, the network also made within-dimension errors
for the adjectives. These were 0.18 at the start of learning and 0.86 after 4000
trials.

The principal result from this simulation is that, all other things being
equal, learning subcategories of associated questions and responses
provides an advantage.

Experiment 5: Category Overlap

One aspect of Experiment 4 is highly arti�cial, however. In the world, lexical
dimensions are tied closely to the massive overlap of adjective categories.
Far from providing redundant information about category identity, lexical
input (“what colour is it?”) functions to pick out one label true of the speci�c
object (e.g. red) from a large set of other labels also true of that same object
(big, furry, wet, dog). In Experiment 5, we investigated the effect of category
overlap in the context of lexical dimensions.

Stimuli and Method

We de�ned categories in this experiment analogously to those in
Experiment 4. The extension of each category encompassed 1�64 (1�2 3 1�2 3 1�2
3 1�8) of the representational space and thus was constrained principally on
one of the four object input dimensions. Sixteen overlapping categories and
16 non-overlapping categories were de�ned. Four categories within each set
were restricted in their range of variation principally on one of the four input
dimensions. We trained separate networks to learn the overlapping and
nonoverlapping categories. For the overlapping categories, four linguistic
context inputs speci�ed the relevant input dimension and the subclass of
outputs. In the nonoverlapping case, four linguistic inputs provided
redundant information about subclasses of outputs and thus were not
necessary to distinguish a correct from an incorrect category.
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FIG. 9. Experiment 5: Category overlap. Performance is the proportion of test items for which
the highest overt response was correct. There were two separate runs of the network, one for
each condition.

Results

As can be seen in Fig. 9, the nonoverlapping categories were learned
considerably faster than the overlapping categories (P , 0.001). Even in the
context of disambiguating lexical dimension inputs, overlapping categories
are more dif�cult to learn than nonoverlapping ones. Since lexical
dimensions in the linguistic context favour adjectives, but overlap (along
with volume and compactness) favours nouns, these results are consistent
with the idea that the developmental trajectory observed in children may
arise from a consortium of differences between the associative structure of
nouns and adjectives that jointly but not necessarily singly favour nouns.



LEARNING NOUNS AND ADJECTIVES 295

Experiment 6: Emergent Syntactic Categories

In all of the experiments we have described, there are two classes of
categories to be learned, nouns and adjectives, differing in one or more ways.
The task of the network is to learn the categories, and we have shown how
certain differences between classes of categories can affect the rate of and
ultimate level of learning. The network’s task is not, however, to learn that
there are two classes of categories and to discover how these classes are
distinguished. Ultimately children do learn to make this distinction. Does
our simple model have anything to say about how this is accomplished?

Although the network starts the task without the knowledge that there are
two classes of categories, it does have access to a much more direct
indication of the distinction: The linguistic contexts associated with the two
classes of words. More precisely, what these inputs tell the network is simply
that there is a distinction to be made. But does the network use the linguistic
context inputs in this way? The explicit task of the network is to map input
objects, accompanied by linguistic contexts, onto one label or another.
However, if the linguistic context is informative for this task, then we would
expect the network to also learn to associate particular contexts with
particular words. These associations, in a sense, would constitute the
beginnings of syntactic categories. In this �nal experiment, we ask what the
network can learn when the meta-categories associated with speci�c
linguistic inputs, that is, noun and adjective, are more arbitrarily de�ned
than the classes of categories thus far examined. If noun and adjective are
just arbitrary collections of categories, the network will have to rely on the
linguistic context input if it is to learn anything about these meta-categories.

Stimuli and Method

As before, stimuli for this experiment were generated randomly, given the
constraints that de�ned each of the categories. Two classes of categories
(noun and adjective) were de�ned that were identical with respect to all of
the variables of interest (volume, compactness, lexical dimensions, overlap).
They differed only in terms of where the member categories were located in
the representational space. The categories, 18 in each class, were de�ned in
such a way that in the representational space, each noun category was
surrounded by adjective categories and vice versa. The pattern of noun and
adjective categories resembled a multidimensional checkerboard. Thus at
the level of the meta-categories, there was no generalisation whatsoever to
be made about the nature of the member categories or the particular regions
associated with nouns or adjectives. In a sense, the meta-categories had no
semantics associated with them. Each category took up 0.003 of the space;
this left uncategorised regions of representational space separating adjacent
categories. There was no overlap between categories. As in experiments
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7All of the mean activations are negative because for this experiment, the network learns to
strongly inhibit all but the right response for each training instance, and for the test patterns,
there is no “right” response from among the trained categories.

8For the analysis of variance, there were two factors, input linguistic context (noun or
adjective) and average activation over output units by meta-category (noun or adjective).There
was only one “subject” (network run) in this experiment, but there were 18 instances of each of
the four combinations of the factors.

TABLE 3
Experiment 6: Noun and Adjective Response to Noun and

Adjective Linguistic Contexts

Input Linguistic Context

Word Output Noun Adjective

Nouns 2 0.103 2 0.165
Adjectives 2 0.162 2 0.113

Figures show the mean activation of noun and adjective
output units in response to 18 object input patterns which
belong to neither meta-category and which are presented
together with either noun or adjective linguistic contexts.

other than Experiment 1, there were four input dimensions de�ning the
perceptual properties of the object, but in this case, there were only two
linguistic context inputs, one for one class of words and the other for the
second class.

As in all of the experiments, the network was trained on randomly
generated instances of the categories. In this case, the network was tested,
however, on a set of 18 prede�ned object input patterns that did not belong
to any of the noun or adjective categories; that is, these inputs fell in the gaps
between the categories which the network had been trained on. Each of
these 18 patterns was tested once together with a noun linguistic context and
once with an adjective linguistic context. The relevant dependent variable in
each case is the relative activation over the noun and the adjective output
units. If the network has begun to divide the words into meta-categories on
the basis of the linguistic context, we should see higher mean activations on
the adjective units when the adjective linguistic context is presented and
higher activations on the noun units when the noun linguistic context is
presented.

Results

Table 3 shows mean output activations for the four cases.7 There is a
strong interaction (P , 0.0018): output activations are higher for words in the
meta-category corresponding to the linguistic context than for words in the
other meta-category. In other words, even though the network cannot have
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generalised about what constitutes an adjective and what constitutes a
noun—there is no generalisation to be made, after all—it has made a
distinction between the two meta-categories. The associations between
linguistic inputs (the two linguistic context units) and linguistic outputs (the
36 word units) are suf�cient to create two classes of words. We do not believe
that the picture is this simple for word learning in children because there are
semantic generalisations to be made concerning part-of-speech categories.
In a more realistic setting, the straightforward learning demonstrated in this
experiment might serve to bootstrap the learning of the relatively abstract
semantic differences between the meta-categories. At any rate, the
implication is that the patterns of errors made by children that implicate
distinct noun and adjective categories could arise only from form-to-form
associations.

GENERAL DISCUSSION

We discuss the results of these experiments on two levels: First, we consider
the network and why it learned as it did; second, we consider the implications
of the present results for our understanding of the origins of the noun
advantage in children and for the nature of children’s knowledge about the
differences between nouns and adjectives.

The Network

We de�ned the categories on which the network was trained in terms of the
properties of the categories’ extensions (volume, shape, overlap) and in
terms of the presence of form-to-form associations between a linguistic
context specifying the question asked of the network and the linguistic
outputs that were possible answers to those questions. The network of
course does not have direct access to any of these global properties of the
learning task. It simply receives one category example at a time and for each
modi�es its weights in such a way that it has stored a composite record of the
instances of each category. The network in no sense stores category
boundaries or anything like the representations of category extensions we
have used throughout this article to visualise the differences between nouns
and adjectives.

Why then do factors such as shape and volume and overlap matter as they
do? Two factors are fundamental to the network’s performance: (1) The
distance between members of the same category relative to the distance
between members of different categories; and (2) the degree of redundancy
in the input.

Each input the network receives represents a point in its multidimensional
input space. Via the weights connecting the input layers and the hidden
layer, the network maps this point in input space onto a point in
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multidimensional hidden-layer space. Inputs that are similar—close to each
other in input space—will tend to map onto points that are close to each
other in hidden-layer space. Points in hidden-layer space in turn are mapped
onto points in category space via the weights connecting the hidden layer
and the output layer. Before training, these mappings will be random,
depending on the randomly generated initial weights. As training
progresses, however, the weights in the network take on values which permit
regions in input space to be associated roughly with the appropriate regions
in category space. This involves some readjustment of the regions in
hidden-layer space associated with inputs. In particular, inputs belonging to
the same category will tend to map onto relatively compact regions in
hidden-layer space (Harnad et al., 1991). Each time the network is trained
on an instance of a category, the weights in the network are adjusted in such
a way that that point in input space tends to get assigned to the region in
output space associated with the category. When a test item is presented to
the network, where it maps to in category space depends entirely on where it
is in input space, in particular, how far it is from previously trained inputs.
The input is implicitly compared to all of these inputs. Thus, the network is
an instance of an exemplar-based model of categorisation (e.g. Nosofsky,
1986). In these models, it is the relative distance between an input and
previously learned exemplars of the different categories which determines
the behavior of the system.

If a given input is likely to be as close to a previous member of another
category as it is to previously trained members of its own category, error will
tend to be high, and learning will take longer, requiring more examples of
each category. More examples result in a greater density of within-category
examples, which can compensate for the nearness to a test input of
distracting examples of other categories.

Category volume and compactness both relate to this relative distance
measure. As category volume increases and number of examples remains
constant, density within categories decreases: The average distance between
members of each category increases. At the same time, the boundaries of
different categories approach each other, so that for a given example of one
category, the nearest distractor becomes nearer. Thus, increasing volume
leads to greater potential confusion between categories.

As category compactness decreases, we also see an increase in the average
distance between members of a category. Consider two extreme cases, a set
of parallel “hyperslabs”, which extend across the full range of values on all
dimensions but one, and a set of evenly spaced hyperspheres of the same
volume as the hyperslabs. The average distance between members of the
same category is greater for the hyperslabs because they may be arbitrarily
far apart on all but one dimension. At the same time, the average distance
between a member of one category and the nearest distractor in another
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category is smaller for the parallel hyperslabs, since the boundary of the
nearest other category is found just across the narrow hyperslab-shaped gap
separating the categories. Thus, decreasing compactness, like increasing
volume, means greater dif�culty because of the potential confusion from
examples of competing categories.

A further factor in category dif�culty, though not as important in our
results, is the degree of redundancy in the input. If more than one input unit
conveys information about the category for an input pattern, then more
network resources (weights) will be dedicated to representing the input-to-
category mapping than would be the case if only one unit were relevant. In
our experiments there is redundancy in all input patterns because of the use
of thermometer encoding. On a given sensory dimension, all units to the
“left” of a unit that is activated are redundant. However, in Experiment 4,
some categories, namely, those with lexical dimension input, had the
bene�ts of more redundancy than other categories. Recall that in this
experiment, lexical dimensions were not required to categorise inputs, which
on the basis of sensory input alone were unambiguous. Thus, the redundant
linguistic input gave the advantage to those categories for which it was
available. Note, however, that while real adjective categories tend to be
distinguished in part by lexical dimensions, they also tend to overlap with
one another. When there is overlap, the lexical dimension is no longer
redundant; rather, it, in combination with the sensory input, is necessary for
determining the category of the input.

In sum, these two factors, (1) relative within- and between-category
exemplar distances and (2) input redundancy, account for the results of our
experiments. Interestingly, a third potential factor, the extent to which a
particular input sensory dimension is relevant for a category, did not play a
signi�cant role. In Experiment 3, “adjective” categories were de�ned in such
a way that a single dimension mattered much more than the other three. For
“nouns”, on the other hand, each sensory dimension was equally relevant. A
learner with a propensity to selectively attend to particular sensory
dimensions might �nd the adjectives easier. Relevance of a single dimension
for a category conveys a disadvantage rather than an advantage for the
network, and this result agrees with what we �nd for children.

The Noun Advantage in Children

These simulations were motivated by the goal of explaining two facts
well-documented in the literature on children’s early word learning: (1) The
fact that nouns labelling concrete objects are learned faster than the
dimensional adjectives that label the perceptible properties of those same
objects; and (2) the fact that during the protracted course of learning
dimensional adjectives, children seem to recognise that the dimensional
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adjectives comprise a class in that they confuse adjective meanings but do
not confuse noun and adjective meanings.

The principal contribution of the present results is that they show that
these two facts can emerge from the simple effects of similarity-based
learning and thus that they do not demand an explanation in terms of prior
conceptual knowledge of noun meanings or the differences between nouns
and adjectives. The argument for prelinguistic notions of the distinction
between objects and their properties is often couched in terms of arguments
that “one cannot get something from nothing” (see, for example, Markman,
1989). These simulations demonstrate that one can get a lot from ordinary
effects of similarity and redundancy on learning—a noun advantage and
protosyntactic categories that in terms of their outward manifestations, that
is, performance, look very much like the developmental trajectories of
children learning common nouns and dimensional adjectives.

In the remainder of this article, we discuss the further contributions and
limitations of the research by addressing three questions: (1) Are the real
nouns and adjectives that children learn like the idealised nouns and
adjectives presented to the network? (2) Does the network instantiate a
conceptual bias for noun-like meanings? and (3) Could the simple
associative effects between linguistic inputs and linguistic outputs be the
basis for a more conceptual understanding of the differences between nouns
and adjectives?

Idealised Versus Real Nouns

The nouns we sought to model are the common names for concrete objects,
such nouns as bottle, cup, mom, dog, bed, and cookie. The idea that the
extensions of such nouns are relatively small, compactly shaped, and
nonoverlapping has been offered repeatedly in the literature (e.g. Markman,
1989; Medin & Ortony, 1989; Rosch, 1973a). Further, Rosch (1973b) has
reported empirical evidence in support of these claims and Mervis (1987) has
presented evidence that when mature usage does not �t this
characterisation, adults in their speech to children shift their use of nouns to
keep the extensions compactly shaped and nonoverlapping.

However, there are other �ndings in the literature that might be
interpreted as showing that common names are not compact but are, rather,
adjective-like in their emphasis of a single dimension. These �ndings
concern the so-called shape bias in early noun learning (see Smith, 1995 for a
review). Speci�cally, in novel word learning tasks, when a novel rigid object
is named by a count noun, young children systematically generalise the
newly learned name to novel objects by their shape ignoring such properties
as colour and texture. This shape bias in early noun learning �ts well with
Biederman’s (1985) and Rosch’s (1973a) earlier results showing that adults
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recognise common objects principally by their shape. Do these results, then,
suggest the real nouns learned by young children are not compact but are
rather like adjectives in being constrained principally on one dimension?
The evidence on the shape bias in early word learning is quite compelling,
but we believe the inference from this fact about the noncompactness of
noun extensions is wrong.

First, the complete evidence on the shape bias does not suggest exclusive
attention to shape in children’s early word learning. Rather, children attend
to shape when objects are rigid but attend to texture and colour when they
are nonrigid, and even with rigid objects, children attend to shape and
texture when the objects have eyes (see Smith, 1995 for a review). Thus, the
total pattern suggests that while young children often emphasise shape in
their early word generalisations, it is not to the complete exclusion of other
properties. Rather, children attend to other properties and shift attention
weights as a function of those properties. Second, although shape may be
important to determining membership in a speci�c category, for real
categories (as opposed to those used in arti�cial word learning tasks), other
properties are also clearly predictive of category membership. Thus, dogs do
not just have a characteristic shape, they have characteristic colours, surface
properties, and manners of movement. Thus, the extensions of the nouns
that children encounter are relatively compact. Finally, shape is not a simple
dimension but is composed of many sensory dimensions; constraints on the
shape of instances will thus make for more compact category extensions than
constraints on, for example, wetness or colour. In sum, the extensions of the
real nouns that children learn early may not be hypercubes in the space of all
possible objects, but all that we know indicates that they are much more
compact than dimensional adjectives.

A Conceptual Bias for Noun-like Meanings?

Our �nding that the similarity relations within and among early-learned
nouns and adjectives may create the noun advantage over adjectives
contrasts with the suggestion that objects as opposed to their attributes are
conceptually special (see, e.g., Gentner & Rattermann, 1991; Markman,
1989). However, one might argue that a three-layer network in which the
hidden layer compresses the sensory input into one holistic representation is
one instantiation of how a whole–object conceptual assumption might be
implemented. From this argument, one might conclude that this network
was “designed” to learn easily about categories in which all instances are
globally similar to each other (and thus compact and small). Is this not, in a
sense, a built-in bias for noun-like categories?

By one interpretation of this question, the answer is a clear “yes”. The
proposal that noun categories are more “natural” than adjective categories
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and the proposal that young children “assume” that words name things and
not their properties are currently unspeci�ed in terms of the processes
through which the naturalness of nouns or children’s assumptions might be
realised. This network offers one implementation of these ideas; it shows just
how nouns might be more “natural” and why very young children seem to
interpret novel words as having nominal meanings. Thus, the results of these
simulations might be properly viewed as supportive of and an extension of
proposals about young children’s early biases and assumptions about word
meanings.

But there is a second interpretation of the question of whether a
noun-advantage was built into the network that demands a clear “no”. It is
true that representations at our hidden layer holistically combine the input
from the separate sensory dimensions. Connectionist networks do not have
to do this. For example, Kruschke’s (1992) ALCOVE network utilises
distinct dimension weights such that the network retains information about
distinct attributes at the hidden layer level. Given these differences, one
might expect that Kruschke’s network would learn adjective categories
more easily than the present one. This may be. However, the conclusion that
our network is structured to make the learning of adjectives hard is not
warranted. It is not warranted because our network learns single-dimension
adjective categories easily, trivially fast when there is only one relevant
dimension and no overlapping categories. That is, when we presented our
network with the same kind of task that ALCOVE has been presented
with—classifying all inputs into two mutually exclusive categories, each
constrained by variation on the same dimension (what might correspond to
learning the categories BLACK versus WHITE)—the network rapidly (in
less than 500 trials) converged to a set of attention weights that emphasise
the solely relevant input dimension. In brief, it is not hard for this network to
learn adjective-like categories.

However, it is hard for this network to learn adjective-like categories
when it must, like young children, simultaneously learn noun-like categories
that require attention to many dimensions and multiple overlapping
adjective categories that each require attention to different dimensions. We
conjecture that a similar dif�culty might hold even for models like
ALCOVE when the task is the simultaneous learning of multiple
overlapping noun-like and adjective-like categories.

In sum, the ease with which the present network learns adjective
categories on one dimension when that is all that it has to learn indicates that
the noun advantage is not solely the product of the compression of
dimensional information at the hidden layer. Rather, the noun advantage
appears to be a product of similarity-based learning and the task of learning
overlapping categories. Given this kind of learning device and this set of
tasks to be learned, noun-like meanings are primary.
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Learning the Categories “Noun” and “Adjective”

The general acceptance of the idea that young children distinguish
between nouns as name for things and adjectives as labels for the properties
of things is based on the facts of the noun advantage and the pattern of
within-adjective confusions that characterise children’s slow and errorful
acquisition of dimensional terms. The simple network that we have studied
distinguishes nouns and adjectives in the very same way that young children
do: It learns noun categories faster than adjective categories and during the
protracted course of learning adjectives, its errors consist of confusing one
adjective with another and not of confusing an adjective with a noun. Thus,
our network, like children, “knows” that nouns and adjectives are different.

The processes that make up this “knowing” by the network, however, are
not of the kind one usually thinks of as knowledge about the different
meanings of nouns and adjectives. All that appears to be known when the
network in Experiment 1 makes these errors is: (1) The noun categories, (2)
the linguistic context that speci�es nominal outputs, and (3) the fact that the
linguistic contexts that specify adjective categories are not associated with
nominal outputs. Apparently this is enough to get a behavioural distinction
between nouns and adjectives in the course of learning. The network knows
about nouns and ipso facto “knows” a class of items that are not nouns. The
results remind us that the internal processes that comprise some external
pattern of behaviour may be simpler than the external behaviour itself.

The present network is a very simple model that leaves out much of what
children probably do know about nouns and adjectives. While our approach
is unabashedly grounded in the semantics of nouns and adjectives, we have
tried to show in Experiment 6 how purely form-to-form learning can also
play a role in the emergence of syntactic categories. In fact, learners appear
to have access to a wealth of purely formal information to guide them in
learning, and a large body of recent work has focused on the extent to which
linguistic categories can be learned on the basis of distributional information
(Elman, 1990; Finch & Chater, 1992) or the formal properties of the words
themselves (Kelly, 1992). As in the present model, these approaches are
statistical and associative; in fact, many are implemented in the form of
connectionist networks. However, given the nature of the inputs and the
restricted architecture, the present network obviously cannot make use of
the phonology of the words or of the detailed pattern of co-occurrences with
other words. We have only sought to demonstrate that syntactic categories
can begin to emerge as a kind of side-effect as the system learns to label
objects. Note what distinguishes these syntactic categories from the
conventional ones, however; because they are directly associated with
objects and their properties, they have a semantic force. Although this may
not be what is usually meant by theorists who write about children’s
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understanding of the differences between nouns and adjectives, this could be
pretty much what the differences amount to in the early stages of acquisition.

CONCLUSION

What is the difference between common nouns and dimensional adjectives
that allows children to acquire nouns more rapidly than adjectives? We
could distinguish the two categories in purely syntactic terms, with respect to
the other categories with which they co-occur. We could also distinguish
them in terms of their function, as Markman (1989) does; we carve up the
world in useful ways with nouns and then resort to adjectives when we need
to distinguish members of the same nominal category along arbitrary
dimensions. But underneath all this might be a more mundane distinction,
one based on the tendencies of nouns and adjectives to delineate particular
sorts of regions in multidimensional perceptual space. Unlike the �rst two
kinds of distinctions, this third is one which is directly available to a relatively
simple learning device, as we have shown in this article. Of course, a child
must eventually learn about more abstract functions and about syntactic
categories much richer than those examined here, but the distinction based
on the most accessible sort of information could provide a foundation for
this later learning.
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